首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The switch between the Krebs cycle and the glyoxylate bypass is controlled by isocitrate dehydrogenase kinase/phosphatase (AceK). AceK, a bifunctional enzyme, phosphorylates and dephosphorylates isocitrate dehydrogenase (IDH) with its unique active site that harbours both the kinase and ATP/ADP-dependent phosphatase activities. AceK was the first example of prokaryotic phosphorylation identified, and the recent characterization of the structures of AceK and its complex with its protein substrate, IDH, now offers a new understanding of both previous and future endeavours. AceK is structurally similar to the eukaryotic protein kinase superfamily, sharing many of the familiar catalytic and regulatory motifs, demonstrating a close evolutionary relationship. Although the active site is shared by both the kinase and phosphatase functions, the catalytic residues needed for phosphatase function are readily seen when compared with the DXDX(T/V) family of phosphatases, despite the fact that the phosphatase function of AceK is strictly ATP/ADP-dependent. Structural analysis has also allowed a detailed look at regulation and its stringent requirements for interacting with IDH.  相似文献   

2.
The chemotaxis response regulator CheY can acquire phosphoryl groups either from its associated autophosphorylating protein kinase, CheA, or from small phosphodonor molecules such as acetyl phosphate. We report a stopped-flow kinetic analysis of CheY phosphorylation by acetyl phosphate. The results show that CheY has a very low affinity for this phosphodonor (K(s)&z.Gt;0.1 M), consistent with the conclusion that, whereas CheY provides catalytic functions for the phosphotransfer reaction, the CheA kinase may act simply to increase the effective phosphodonor concentration at the CheY active site.  相似文献   

3.
Isocitrate dehydrogenase kinase/phosphatase (AceK) is a bifunctional enzyme with both kinase and phosphatase activities that are activated by Mg2+. We have studied the interactions of Mn2+and Mg2+ with AceK using isothermal titration calorimetry (ITC) combined with molecular docking simulations and show for the first time that Mn2+ also activates the enzyme activities. However, Mn2+ and Mg2+ exert their effects by different mechanisms. Although they have similar binding constants (of 1.11?×?105 and 0.98?×?105 M?1, respectively) for AceK and induce conformational changes of the enzyme, they do not compete for the same binding site. Instead Mn2+ appears to bind to the regulatory domain of AceK, and its effect is transmitted to the active site of the enzyme by the conformational change that it induces. The information in this study should be very useful for understanding the molecular mechanism underlying the interaction between AceK and metal ions, especially Mn2+ and Mg2+.  相似文献   

4.
5.
Glucokinase (GK), a glucose sensor, maintains plasma glucose homeostasis via phosphorylation of glucose and is a potential therapeutic target for treating maturity-onset diabetes of the young (MODY) and persistent hyperinsulinemic hypoglycemia of infancy (PHHI). To characterize the catalytic mechanism of glucose phosphorylation by GK, we combined molecular modeling, molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) calculations, experimental mutagenesis and enzymatic kinetic analysis on both wild-type and mutated GK. Our three-dimensional (3D) model of the GK-Mg2+-ATP-glucose (GMAG) complex, is in agreement with a large number of mutagenesis data, and elucidates atomic information of the catalytic site in GK for glucose phosphorylation. A 10-ns MD simulation of the GMAG complex revealed that Lys169 plays a dominant role in glucose phosphorylation. This prediction was verified by experimental mutagenesis of GK (K169A) and enzymatic kinetic analyses of glucose phosphorylation. QM/MM calculations were further used to study the role of Lys169 in the catalytic mechanism of the glucose phosphorylation and we found that Lys169 enhances the binding of GK with both ATP and glucose by serving as a bridge between ATP and glucose. More importantly, Lys169 directly participates in the glucose phosphorylation as a general acid catalyst. Our findings provide mechanistic details of glucose phorphorylation catalyzed by GK, and are important for understanding the pathogenic mechanism of MODY.  相似文献   

6.
Missense PTEN mutations of the active site residues Asp-92, Cys-124 and Gly-129 contribute to Cowden syndrome. How their mutations affect phospholipid phosphatase activity and tumor suppressor function of PTEN has been defined. In this study, we investigated how their mutations affect the kinetics and catalytic mechanism of PTEN phosphoprotein phosphatase activity. Our data suggest that PTEN catalysis of phosphoprotein dephosphorylation follows a two-step mechanism with Cys-124 transiently phosphorylated to form the phosphoenzyme intermediate. In spite of this, we were unable to trap the genuine phosphoenzyme intermediate; instead, we unexpectedly discovered a novel phosphotransfer reaction in which the phosphate group is transferred from a tyrosyl phosphopeptide to PTEN to form a unique phosphorylated protein. Even though the finding is novel, the phosphotransfer reaction is likely an in vitro non-enzymatic reaction. Kinetic analysis revealed that mutation of Asp-92 has negligible impacts on phosphopeptide phosphatase activity of PTEN, suggesting that Asp-92 does not participate in the phosphopeptide dephosphorylation reaction. The results also imply that allosteric regulators facilitating the recruitment of Asp-92 to participate in catalysis will increase the activity of PTEN in dephosphorylating phosphoprotein and phosphopeptide substrates. Furthermore, kinetic analysis revealed that the G129E mutation has different effects on phospholipid and phosphoprotein phosphatase activities. Taken together, the data show that while the two phosphatase activities of PTEN follow a similar catalytic mechanism, they have notable differences in the requirements of the active site structure.  相似文献   

7.
Phosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase, or protein kinase A, on Thr-197 is required for optimal enzyme activity, and enzyme isolated from either animal sources or bacterial expression strains is found phosphorylated at this site. Autophosphorylation of Thr-197 occurs in Escherichia coli and in vitro but is an inefficient intermolecular reaction catalyzed primarily by active, previously phosphorylated molecules. In contrast, the Thr-197 phosphorylation of newly synthesized protein kinase A in intact S49 mouse lymphoma cells is both efficient and insensitive to activators or inhibitors of intracellular protein kinase A. Using [35S]methionine-labeled, nonphosphorylated, recombinant catalytic subunit as the substrate in a gel mobility shift assay, we have identified an activity in extracts of protein kinase A-deficient S49 cells that phosphorylates catalytic subunit on Thr-197. The protein kinase A kinase activity partially purified by anion-exchange and hydroxylapatite chromatography is an efficient catalyst of protein kinase A phosphorylation in terms of both a low Km for ATP and a rapid time course. Phosphorylation of wild-type catalytic subunit by the kinase kinase activates the subunit for binding to a pseudosubstrate peptide inhibitor of protein kinase A. By both the gel shift assay and a [γ-32P]ATP incorporation assay, the enzyme is active on wild-type catalytic subunit and on an inactive mutant with Met substituted for Lys-72 but inactive on a mutant with Ala substituted for Thr-197. Combined with the results from mutant subunits, phosphoamino acid analysis suggests that the enzyme is specific for phosphorylation of Thr-197.  相似文献   

8.
Phosphorylation mediates the function of many proteins and enzymes. In the catalytic subunit of cAMP-dependent protein kinase, phosphorylation of Thr 197 in the activation loop strongly influences its catalytic activity. In order to provide theoretical understanding about this important regulatory process, classical molecular dynamics simulations and ab initio QM/MM calculations have been carried out on the wild-type PKA-Mg(2) ATP-substrate complex and its dephosphorylated mutant, T197A. It was found that pThr 197 not only facilitates the phosphoryl transfer reaction by stabilizing the transition state through electrostatic interactions but also strongly affects its essential protein dynamics as well as the active site conformation.  相似文献   

9.
The reaction of the phosphate residue transfer catalysed by histone kinase dependent on adenosine 3':5'-monophosphate (cyclic AMP) was studied. The phosphotransferase reaction was shown to obey the mechanism of ping-pong bi-bi type. After incubation of the catalytic subunit of histone kinase with [gamma-32P]ATP the incorporation of one mole of [32P]phosphage per mole of protein was observed. The tryptic [32P]phosphohistidine-containing peptide was isolated and its N-terminus and amino acid composition were determined. The 2',3'-dialdehyde derivative of ATP (oATP) was used as the affinity label for the catalytic subunit of cyclic-AMP-dependent histone kinase. The inhibitor formed an alidmine bond with epsilon-amino group of the lysine residue of the active site and was irreversibly bound to the enzyme after reduction by sodium borohydride with concurrent irreversible inactivation of the enzyme. After inactivation, about one mole of 14C-labelled inhibitor was incorporated per mole of the enzyme. ATP effectively protected the catalytic subunit of histone kinase against inactivation by oATP. Tryptic digestion of the enzyme-inhibitor complex led to the isolation of the 14C-labelled peptide of the active site of histone kinase. Basing on these results, the role of histidine and lysine residues in the active site of the catalytic subunit of histone kinase was suggested.  相似文献   

10.
G S Lukat  A M Stock  J B Stock 《Biochemistry》1990,29(23):5436-5442
Signal transduction in bacterial chemotaxis involves transfer of a phosphoryl group between the cytoplasmic proteins CheA and CheY. In addition to the established metal ion requirement for autophosphorylation of CheA, divalent magnesium ions are necessary for the transfer of phosphate from CheA to CheY. The work described here demonstrates via fluorescence studies that CheY contains a magnesium ion binding site. This site is a strong candidate for the metal ion site required to facilitate phosphotransfer from phospho-CheA to CheY. The diminished magnesium ion interaction with CheY mutant D13N and the lack of metal ion binding to D57N along with significant reduction in phosphotransfer to these two mutants are in direct contrast to the behavior of wild-type CheY. This supports the hypothesis that the acidic pocket formed by Asp13 and Asp57 is essential to metal binding and phosphotransfer activity. Metal ion is also required for the dephosphorylation reaction, raising the possibility that the phosphotransfer and hydrolysis reactions occur by a common metal-phosphoprotein transition-state intermediate. The highly conserved nature of the proposed metal ion binding site and site of phosphorylation within the large family of phosphorylated regulatory proteins that are homologous to CheY supports the hypothesis that all these proteins function by a similar catalytic mechanism.  相似文献   

11.
To investigate the mechanism of the deacylation reaction in the active site of human butyrylcholinesterase (BuChE), we carried out quantum mechanical (QM) calculations on cluster models of the active site built from a crystallographic structure. The models consisted of the substrate butyrate moiety, the catalytic triad of residues (Ser198, Glu325, and His438), the "oxy-anion hole" (Gly116, Gly117, and Ala199), the side chain of Glu197, four water molecules, the side chain of Ser225, and the peptide linkage between Val321 and Asn322. Analyses of the equilibrium geometries, electronic properties, and energies of the QM models gave insights into the catalytic mechanism. In addition, the QM calculations provided the data required to build a molecular mechanics representation of the reactive BuChE region that was employed in molecular dynamics simulations followed by molecular-mechanics-Poisson-Boltzmann (MM-PB) calculations. Subsequently, we combined the QM energies with average MM-PB energies to estimate the free energy of the reactive structures in the enzyme. The rate-determining step corresponds to the formation of a tetrahedral intermediate with a free-energy barrier of approximately 14.0 kcal/mol. The modulation of the BuChE activity, exerted by either neutral molecules (glycerol, GOL) or a second butyrylcholine (CHO) molecule bound to the cation-pi site, does not involve any significant allosteric effect. Interestingly, the presence of GOL or CHO stabilizes a product complex formed between a butyric acid molecule and BuChE. These results are in consonance with the crystallographic structure of BuChE, in which the catalytic Ser198 interacts with a butyric fragment, while the cation-pi site is occupied by one GOL molecule.  相似文献   

12.
Magnetic resonance and kinetic studies of the catalytic subunit of a Type II cAMP-dependent protein kinase from bovine heart have established the active complex to be an enzyme-ATP-metal bridge. The metal ion is β,γ coordinated with Δ chirality at the β-phosphorous atom. The binding of a second metal ion at the active site which bridges the enzyme to the three phosphoryl groups of ATP, partially inhibits the reaction. Binding of the metal-ATP substrate to the enzyme occurs in a diffusion-controlled reaction followed by a 40 ° change in the glycosidic torsional angle. This conformational change results from strong interaction of the nucleotide base with the enzyme. NMR studies of four ATP-utilizing enzymes show a correlation between such conformational changes and high nucleotide base specificity. Heptapeptide substrates and substrate analogs bind to the active site of the catalytic subunit at a rate significantly lower than collision frequency indicating conformational selection by the enzyme or a subsequent slow conformational change. NMR studies of the conformation of the enzyme-bound peptide substrates have ruled out α-helical and β-pleated sheet structures. The results of kinetic studies of peptide substrates in which the amino acid sequence was systematically varied were used to rule out the obligatory requirement for all possible β-turn conformations within the heptapeptide although an enzymatic preference for a β2–5 or β3–6 turn could not be excluded. Hence if protein kinase has an absolute requirement for a specific secondary structure, then this structure must be a coil. In the enzyme-substrate complex the distance along the reaction coordinate between the γ-P of ATP and the serine oxygen of the peptide substrate (5.3 ± 0.7 Å) allows room for a metaphosphate intermediate. This finding together with kinetic observations as well as the location of the inhibitory metal suggest a dissociative mechanism for protein kinase, although a mechanism with some associative character remains possible. Regulation of protein kinase is accomplished by competition between the regulatory subunit and peptide or protein substrates at the active site of the catalytic subunit. Thus, the regulatory subunit is found by NMR to block the binding of the peptide substrate to the active site of protein kinase but allows the binding of the nucleotide substrate and divalent cations. The dissociation constant of the regulatory subunit from the active site (10?10m) is increased ~10-fold by phosphorylation and ~104-fold by the binding of cAMP, to a value (10?5m) which exceeds the intracellular concentration of the R2C2 holoenzyme complex (10?6m). The resulting dissociation of the holoenzyme releases the catalytic subunit, permitting the active site binding of peptide or protein substrates.  相似文献   

13.
Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNAPro. The most important functional element of this catalytic mechanism is the 2′-OH group of the terminal adenosine 76 of Ala-tRNAPro, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3′-O atom of A76.  相似文献   

14.
8-Azido-adenosine 5'-triphosphate (n8(3)ATP) appeared to be a suitable photoaffinity label for the protein kinase dependent on adenosine 3':5'-monophosphate (cAMP). It competes with ATP for the high-affinity ATP site in the undissociated form of the kinase and in the phosphotransferase reaction catalyzed by the catalytic subunit. Furthermore, it is accepted as a substrate in the phosphotransfer reaction. n8(3)ATP incorporated into the holoenzyme is covalently bound irradiation. Protection experiments with ATP indicated that this covalent attachment occurs in the high-affinity ATP site of the enzyme. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate shows that n8(3)ATP is bound to the catalytic subunit. After irradiation the enzyme was dissociated by cAMP. Proportional to the incorporated [gamma-32P]n8(3)ATP, a loss in phosphotransferase activity was found. These results support our model that both ATP sites coincide with respect to their adenine binding part. Thus binding of the regulatory subunit to the catalytic subunit would then transform the low-affinity catalytically active ATP site into a high-affinity inactive site.  相似文献   

15.
The Shiga toxin (Stx)-encoding bacteriophage 933W contains an open reading frame, stk, with amino acid sequence similarity to the catalytic domain of eukaryotic serine/threonine (Ser/Thr) protein kinases (PKs). Eukaryotic PKs are related by a common catalytic domain, consisting of invariant and nearly invariant residues necessary for ATP binding and phosphotransfer. We demonstrate that rather than a Ser/Thr kinase, stk encodes a eukaryotic-like tyrosine (Tyr) kinase. An affinity-purified recombinant Stk (rStk) autophosphorylates and catalyzes the phosphorylation of an artificial substrate on Tyr residues and not on Ser or Thr residues. A change of an invariant lysine within the putative catalytic domain abolishes this kinase activity, indicating that Stk uses a phosphotransfer mechanism similar to the mechanism used by eukaryotic PKs. We provide evidence suggesting that stk is cotranscribed with cI from the phage promoter responsible for maintaining CI expression during lysogeny. The stk gene was identified in prophages obtained from independently isolated Stx-producing Escherichia coli clinical isolates, suggesting that selective pressure has maintained the stk gene in these pathogenic bacteria.  相似文献   

16.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   

17.
18.
Histidine protein kinases and response regulators form the basis of phosphotransfer signal transduction pathways. Commonly referred to as two-component systems, these modular and adaptable signaling schemes are prevalent in prokaryotes. Structures of the core domains of histidine kinases reveal a protein kinase fold different from that of the Ser/Thr/Tyr protein kinase family, but similar to that of other ATP binding domains. Recent structure determinations of phosphorylated response regulator domains indicate a conserved mechanism for the propagated conformational change that accompanies phosphorylation of an active site Asp residue. The altered molecular surface promotes specific protein-protein interactions that mediate the downstream response.  相似文献   

19.
20.
Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser2152 site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser2152. These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号