首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367–606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients’ lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.  相似文献   

2.
The spike glycoprotein (S) of recently identified Middle East respiratory syndrome coronavirus (MERS-CoV) targets the cellular receptor, dipeptidyl peptidase 4 (DPP4). Sequence comparison and modeling analysis have revealed a putative receptor-binding domain (RBD) on the viral spike, which mediates this interaction. We report the 3.0 Å-resolution crystal structure of MERS-CoV RBD bound to the extracellular domain of human DPP4. Our results show that MERS-CoV RBD consists of a core and a receptor-binding subdomain. The receptor-binding subdomain interacts with DPP4 β-propeller but not its intrinsic hydrolase domain. MERS-CoV RBD and related SARS-CoV RBD share a high degree of structural similarity in their core subdomains, but are notably divergent in the receptor-binding subdomain. Mutagenesis studies have identified several key residues in the receptor-binding subdomain that are critical for viral binding to DPP4 and entry into the target cell. The atomic details at the interface between MERS-CoV RBD and DPP4 provide structural understanding of the virus and receptor interaction, which can guide development of therapeutics and vaccines against MERS-CoV infection.  相似文献   

3.
A novel coronavirus, the Middle East respiratory syndrome coronavirus, recently emerged through zoonotic transmission, causing a severe lower respiratory tract infection in humans. In two recent papers, one published in Cell Research, the crystal structure of the viral receptor-binding domain in complex with the host CD26/dipeptidyl peptidase 4 receptor has now been characterized.In mid 2012, a novel coronavirus (CoV) was isolated form the sputum of a patient with acute pneumonia and renal failure1. As of July 10th 2013, this virus, named Middle East respiratory syndrome (MERS)-CoV, has caused 80 laboratory-confirmed infections of which 44 were fatal2. The limited data available suggest that the virus is introduced into the human population through multiple independent, zoonotic transmission events from a — so far unknown — animal source with subsequent limited human-to-human spread. However, scenarios in which a single zoonotic transmission event has led to sustained, largely asymptomatic and non-detected human-to-human transmission cannot be excluded yet. Genetically, MERS-CoV is related to SARS-CoV, which killed nearly 10% of approximately 8 000 persons that were infected in the 2003 outbreak. It is therefore of utmost importance to better understand the biology and pathogenesis of this virus.Coronaviruses infect mammals and birds, and occasionally cross the species barrier. The primary determinant of coronavirus host and cell tropism is the viral spike (S) entry protein that functions by binding to a cell surface receptor. The MERS-CoV S protein is a type I membrane glycoprotein, assembled as trimers that constitute the typical crown-like peplomers on the surface of the enveloped coronavirus. Functionally, two regions, S1 and S2, can be defined in the S protein, which are involved in binding and fusion with host cells, respectively. Recent studies have mapped the receptor-binding domain (RBD) to a ∼231-amino acid long region within the S1 region of MERS-CoV3.MERS-CoV uses a cell surface amino peptidase, dipeptidyl peptidase 4 (DPP4), also known as CD26, as a functional receptor4. The multifunctional DPP4 — highly conserved among mammals — plays a major role in glucose metabolism by its degradation of incretins. It has been further implicated in T-cell activation, chemotaxis modulation, cell adhesion, and apoptosis5. In humans, it is primarily expressed on the epithelial cells in the lungs, kidney, small intestine, liver and prostate, and on activated leukocytes, while it also occurs in a soluble form in the circulation4,5.The spike-receptor binding interface can be seen as a lock-and-key interaction where minor mutations within the interacting domain of the S protein or the receptor can abrogate infection, placing a barrier for cross-species transmission. Zoonotic potential of coronaviruses has been attributed to the adaptability of the S protein to human receptor orthologs. Intriguingly, the MERS-CoV S protein seems promiscuous in binding to orthologous receptors. Whereas coronaviruses generally tend to have a narrow host tropism, MERS-CoV can infect cells of a wide variety of species, at least in vitro4,6. The broad cell species tropism suggests that MERS-CoV has acquired facile cross-species transmissibility by binding to an evolutionarily conserved receptor.Just four months after the discovery of the receptor, two Chinese research teams have now independently described the MERS-CoV spike-receptor interface. The study by Wang et al.7 recently published in Cell Research, and a recent study by Lu et al.8 published in Nature, both reveal the crystal structure of the RBD of the MERS-CoV S protein bound to its receptor, human DPP4. DPP4, of which the structure was published before9, consists of an N-terminal eight-bladed β-propeller domain and a C-terminal α/β-hydrolase domain. The RBD of the MERS-CoV S protein contains two subdomains: a conserved core subdomain and a receptor-binding subdomain, with the latter contacting blades 4 and 5 of the DPP4 β-propeller domain. Structural comparison with the RBD of the related betacoronavirus SARS-CoV (using the ACE2 peptidase as a receptor) reveals a conserved core domain and highly variable — both in length and in residues — receptor-binding region, explaining the differential receptor usage.Both teams have scrutinized the RBD-receptor interface and identified critical residues within the interacting domain of the S protein or receptor, which allow MERS-CoV to bind to its receptor. Structural analysis and mutational analysis have identified several key residues in the RBD of the S protein shown to be critical for DPP4 binding and viral entry. This information is crucial to understand the adaptation of MERS-CoV to humans. Studies with SARS-CoV isolated from humans and civet cats (which function as the intermediate host) revealed 2 amino acids in the RBD that caused an > 1 000-fold difference in binding affinity to human receptor ACE210. Analysis of the MERS-CoV RBD sequences of the isolates characterized thus far shows no sequence variation except that 2 virus samples isolated from patients in the UK (GenBank: KC667074 and KC164505) had a leucine-to-phenylalanine substitution at position 506 of the S protein (L506F). As shown by Wang et al.7, residue L506 contacts DPP4 and its substitution to alanine reduced MERS-CoV S-mediated infectivity by over 50%.With the structure available, the promiscuous binding of MERS-CoV to DPP4 orthologs can now be analyzed at the molecular level. Relevant to functional usage of orthologous receptors by MERS-CoV is the degree of conservation of the amino acid residues in DPP4 that were identified to contact the viral RBD7,8. DPP4 sequence comparison reveals that mammalian DPP4 orthologs (e.g., of macaque, horse, rabbit and pig) have no or little variation for residues contacting MERS-CoV RBD in human DPP4 (
Open in a separate window1 Critical residues in DPP4, which contact the MERS-CoV RBD, identified by Wang et al.7 and Lu et al.8. Position (human DPP4 numbering) and single-letter identity of RBD-contacting residues are indicated;2% identity of RBD-contacting residues in relative to those in human DPP4;3 unpublished results from BLH.In conclusion, knowing the molecular details of the coronavirus-receptor interface will be highly instrumental in predicting interactions between MERS-CoV and orthologous receptors and mutation-driven host range expansion, and may help to identify susceptible host species and hence the host reservoir(s) for MERS-CoV. In addition, the structural information of the interface between the S protein and the receptor may provide novel strategies for developing effective antibodies or drugs that target the spike-receptor interface.  相似文献   

4.
Adenosine Deaminase Acts as a Natural Antagonist for Dipeptidyl Peptidase 4-Mediated Entry of the Middle East Respiratory Syndrome Coronavirus     
V. Stalin Raj  Saskia L. Smits  Lisette B. Provacia  Judith M. A. van den Brand  Lidewij Wiersma  Werner J. D. Ouwendijk  Theo M. Bestebroer  Monique I. Spronken  Geert van Amerongen  Peter J. M. Rottier  Ron A. M. Fouchier  Berend Jan Bosch  Albert D.M.E. Osterhaus  Bart L. Haagmans 《Journal of virology》2014,88(3):1834-1838
Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in cells of different species using dipeptidyl peptidase 4 (DPP4) as a functional receptor. Here we show the resistance of ferrets to MERS-CoV infection and inability of ferret DDP4 to bind MERS-CoV. Site-directed mutagenesis of amino acids variable in ferret DPP4 thus revealed the functional human DPP4 virus binding site. Adenosine deaminase (ADA), a DPP4 binding protein, competed for virus binding, acting as a natural antagonist for MERS-CoV infection.  相似文献   

5.
Differential Expression of the Middle East Respiratory Syndrome Coronavirus Receptor in the Upper Respiratory Tracts of Humans and Dromedary Camels     
W. Widagdo  V. Stalin Raj  Debby Schipper  Kimberley Kolijn  Geert J. L. H. van Leenders  Berend J. Bosch  Albert Bensaid  Joaquim Segalés  Wolfgang Baumg?rtner  Albert D. M. E. Osterhaus  Marion P. Koopmans  Judith M. A. van den Brand  Bart L. Haagmans 《Journal of virology》2016,90(9):4838-4842
Middle East respiratory syndrome coronavirus (MERS-CoV) is not efficiently transmitted between humans, but it is highly prevalent in dromedary camels. Here we report that the MERS-CoV receptor—dipeptidyl peptidase 4 (DPP4)—is expressed in the upper respiratory tract epithelium of camels but not in that of humans. Lack of DPP4 expression may be the primary cause of limited MERS-CoV replication in the human upper respiratory tract and hence restrict transmission.  相似文献   

6.
Identification of a Receptor-Binding Domain in the S Protein of the Novel Human Coronavirus Middle East Respiratory Syndrome Coronavirus as an Essential Target for Vaccine Development     
Lanying Du  Guangyu Zhao  Zhihua Kou  Cuiqing Ma  Shihui Sun  Vincent K. M. Poon  Lu Lu  Lili Wang  Asim K. Debnath  Bo-Jian Zheng  Yusen Zhou  Shibo Jiang 《Journal of virology》2013,87(17):9939-9942
A novel human Middle East respiratory syndrome coronavirus (MERS-CoV) caused outbreaks of severe acute respiratory syndrome (SARS)-like illness with a high mortality rate, raising concerns of its pandemic potential. Dipeptidyl peptidase-4 (DPP4) was recently identified as its receptor. Here we showed that residues 377 to 662 in the S protein of MERS-CoV specifically bound to DPP4-expressing cells and soluble DPP4 protein and induced significant neutralizing antibody responses, suggesting that this region contains the receptor-binding domain (RBD), which has a potential to be developed as a MERS-CoV vaccine.  相似文献   

7.
Role of the Spike Glycoprotein of Human Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Virus Entry and Syncytia Formation     
Zhaohui Qian  Samuel R. Dominguez  Kathryn V. Holmes 《PloS one》2013,8(10)
Little is known about the biology of the emerging human group c betacoronavirus, Middle East Respiratory Syndrome coronavirus (MERS-CoV). Because coronavirus spike glycoproteins (S) mediate virus entry, affect viral host range, and elicit neutralizing antibodies, analyzing the functions of MERS-CoV S protein is a high research priority. MERS-CoV S on lentivirus pseudovirions mediated entry into a variety of cell types including embryo cells from New World Eptesicus fuscus bats. Surprisingly, a polyclonal antibody to the S protein of MHV, a group a murine betacoronavirus, cross-reacted in immunoblots with the S2 domain of group c MERS-CoV spike protein. MERS pseudovirions released from 293T cells contained only uncleaved S, and pseudovirus entry was blocked by lysosomotropic reagents NH4Cl and bafilomycin and inhibitors of cathepsin L. However, when MERS pseudovirions with uncleaved S protein were adsorbed at 4°C to Vero E6 cells, brief trypsin treatment at neutral pH triggered virus entry at the plasma membrane and syncytia formation. When 293T cells producing MERS pseudotypes co-expressed serine proteases TMPRSS-2 or -4, large syncytia formed at neutral pH, and the pseudovirions produced were non-infectious and deficient in S protein. These experiments show that if S protein on MERS pseudovirions is uncleaved, then viruses enter by endocytosis in a cathepsin L-dependent manner, but if MERS-CoV S is cleaved, either during virus maturation by serine proteases or on pseudovirions by trypsin in extracellular fluids, then viruses enter at the plasma membrane at neutral pH and cause massive syncytia formation even in cells that express little or no MERS-CoV receptor. Thus, whether MERS-CoV enters cells within endosomes or at the plasma membrane depends upon the host cell type and tissue, and is determined by the location of host proteases that cleave the viral spike glycoprotein and activate membrane fusion.  相似文献   

8.
CD26/DPP4 Cell-Surface Expression in Bat Cells Correlates with Bat Cell Susceptibility to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection and Evolution of Persistent Infection     
Yíngyún Caì  Shuǐqìng Yú  Elena N. Postnikova  Steven Mazur  John G. Bernbaum  Robin Burk  Téngfēi Zhāng  Sheli R. Radoshitzky  Marcel A. Müller  Ingo Jordan  Laura Bollinger  Lisa E. Hensley  Peter B. Jahrling  Jens H. Kuhn 《PloS one》2014,9(11)
Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors.  相似文献   

9.
Protective Efficacy of Recombinant Modified Vaccinia Virus Ankara Delivering Middle East Respiratory Syndrome Coronavirus Spike Glycoprotein     
Asisa Volz  Alexandra Kupke  Fei Song  Sylvia Jany  Robert Fux  Hosam Shams-Eldin  J?rg Schmidt  Christin Becker  Markus Eickmann  Stephan Becker  Gerd Sutter 《Journal of virology》2015,89(16):8651-8656
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory disease in humans. We tested a recombinant modified vaccinia virus Ankara (MVA) vaccine expressing full-length MERS-CoV spike (S) glycoprotein by immunizing BALB/c mice with either intramuscular or subcutaneous regimens. In all cases, MVA-MERS-S induced MERS-CoV-specific CD8+ T cells and virus-neutralizing antibodies. Vaccinated mice were protected against MERS-CoV challenge infection after transduction with the human dipeptidyl peptidase 4 receptor. This MERS-CoV infection model demonstrates the safety and efficacy of the candidate vaccine.  相似文献   

10.
Glycosylation of Mouse DPP4 Plays a Role in Inhibiting Middle East Respiratory Syndrome Coronavirus Infection     
Kayla M. Peck  Adam S. Cockrell  Boyd L. Yount  Trevor Scobey  Ralph S. Baric  Mark T. Heise 《Journal of virology》2015,89(8):4696-4699
Middle East respiratory syndrome coronavirus (MERS-CoV) utilizes dipeptidyl peptidase 4 (DPP4) as an entry receptor. Mouse DPP4 (mDPP4) does not support MERS-CoV entry; however, changes at positions 288 and 330 can confer permissivity. Position 330 changes the charge and glycosylation state of mDPP4. We show that glycosylation is a major factor impacting DPP4 receptor function. These results provide insight into DPP4 species-specific differences impacting MERS-CoV host range and may inform MERS-CoV mouse model development.  相似文献   

11.
Mouse Dipeptidyl Peptidase 4 Is Not a Functional Receptor for Middle East Respiratory Syndrome Coronavirus Infection     
Adam S. Cockrell  Kayla M. Peck  Boyd L. Yount  Sudhakar S. Agnihothram  Trevor Scobey  Nicole R. Curnes  Ralph S. Baric  Mark T. Heise 《Journal of virology》2014,88(9):5195-5199
Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.  相似文献   

12.
Laboratory Investigation and Phylogenetic Analysis of an Imported Middle East Respiratory Syndrome Coronavirus Case in Greece     
Athanasios Kossyvakis  Ying Tao  Xiaoyan Lu  Vasiliki Pogka  Sotirios Tsiodras  Mary Emmanouil  Andreas F. Mentis  Suxiang Tong  Dean D. Erdman  Antonios Antoniadis 《PloS one》2015,10(4)
Rapid and reliable laboratory diagnosis of persons suspected of Middle East respiratory syndrome coronavirus (MERS-CoV) infection is important for timely implementation of infection control practices and disease management. In addition, monitoring molecular changes in the virus can help elucidate chains of transmission and identify mutations that might influence virus transmission efficiency. This was illustrated by a recent laboratory investigation we conducted on an imported MERS-CoV case in Greece. Two oropharyngeal swab specimens were collected on the 1st and 2nd day of patient hospitalization and tested using two real-time RT-PCR (rRT-PCR) assays targeting the UpE and Orf-1a regions of the MERS-CoV genome and RT-PCR and partial sequencing of RNA-dependent RNA polymerase and nucleocapsid genes. Serum specimens were also collected and serological test were performed. Results from the first swab sample were inconclusive while the second swab was strongly positive for MERS-CoV RNA by rRT-PCR and confirmed positive by RT-PCR and partial gene sequencing. Positive serologic test results further confirmed MERS-CoV infection. Full-length nucleocapsid and spike gene coding sequences were later obtained from the positive swab sample. Phylogenetic analysis revealed that the virus was closely related to recent human-derived MERS-CoV strains obtained in Jeddah and Makkah, Saudi Arabia, in April 2014 and dromedary camels in Saudi Arabia and Qatar. These findings were consistent with the patient’s history. We also identified a unique amino acid substitution in the spike receptor binding domain that may have implications for receptor binding efficiency. Our initial inconclusive rRT-PCR results highlight the importance of collecting multiple specimens from suspect MERS-CoV cases and particularly specimens from the lower respiratory tract.  相似文献   

13.
Structure of the Fusion Core and Inhibition of Fusion by a Heptad Repeat Peptide Derived from the S Protein of Middle East Respiratory Syndrome Coronavirus     
Jing Gao  Guangwen Lu  Jianxun Qi  Yan Li  Ying Wu  Yao Deng  Heyuan Geng  Hongbin Li  Qihui Wang  Haixia Xiao  Wenjie Tan  Jinghua Yan  George F. Gao 《Journal of virology》2013,87(24):13134-13140
Middle East respiratory syndrome coronavirus (MERS-CoV) recently emerged as a severe worldwide public health concern. The virus is highly pathogenic, manifesting in infected patients with an approximately 50% fatality rate. It is known that the surface spike (S) proteins of coronaviruses mediate receptor recognition and membrane fusion, thereby playing an indispensable role in initiating infection. In this process, heptad repeats 1 and 2 (HR1 and HR2) of the S protein assemble into a complex called the fusion core, which represents a key membrane fusion architecture. To date, however, the MERS-CoV fusion core remains uncharacterized. In this study, we performed a series of biochemical and biophysical analyses characterizing the HR1/HR2 complexes of this novel virus. The HR sequences were variably truncated and then connected with a flexible amino acid linker. In each case, the recombinant protein automatically assembled into a trimer in solution, displaying a typical α-helical structure. One of these trimers was successfully crystallized, and its structure was solved at a resolution of 1.9 Å. A canonical 6-helix bundle, like those reported for other coronaviruses, was revealed, with three HR1 helices forming the central coiled-coil core and three HR2 chains surrounding the core in the HR1 side grooves. This demonstrates that MERS-CoV utilizes a mechanism similar to those of other class I enveloped viruses for membrane fusion. With this notion, we further identified an HR2-based peptide that could potently inhibit MERS-CoV fusion and entry by using a pseudotyped-virus system. These results lay the groundwork for future inhibitory peptidic drug design.  相似文献   

14.
Crystal Structure of the Receptor-Binding Domain from Newly Emerged Middle East Respiratory Syndrome Coronavirus     
Yaoqing Chen  Kanagalaghatta R. Rajashankar  Yang Yang  Sudhakar S. Agnihothram  Chang Liu  Yi-Lun Lin  Ralph S. Baric  Fang Li 《Journal of virology》2013,87(19):10777-10783
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) has infected at least 77 people, with a fatality rate of more than 50%. Alarmingly, the virus demonstrates the capability of human-to-human transmission, raising the possibility of global spread and endangering world health and economy. Here we have identified the receptor-binding domain (RBD) from the MERS-CoV spike protein and determined its crystal structure. This study also presents a structural comparison of MERS-CoV RBD with other coronavirus RBDs, successfully positioning MERS-CoV on the landscape of coronavirus evolution and providing insights into receptor binding by MERS-CoV. Furthermore, we found that MERS-CoV RBD functions as an effective entry inhibitor of MERS-CoV. The identified MERS-CoV RBD may also serve as a potential candidate for MERS-CoV subunit vaccines. Overall, this study enhances our understanding of the evolution of coronavirus RBDs, provides insights into receptor recognition by MERS-CoV, and may help control the transmission of MERS-CoV in humans.  相似文献   

15.
Detection and full genome characterization of two beta CoV viruses related to Middle East respiratory syndrome from bats in Italy     
Ana Moreno  Davide Lelli  Luca de Sabato  Guendalina Zaccaria  Arianna Boni  Enrica Sozzi  Alice Prosperi  Antonio Lavazza  Eleonora Cella  Maria Rita Castrucci  Massimo Ciccozzi  Gabriele Vaccari 《Virology journal》2017,14(1):239

Background

Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii.

Methods

Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB).

Results

Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs.

Conclusions

This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.
  相似文献   

16.
二肽基肽酶4为人类中东呼吸道综合征冠状病毒MERS-CoV功能性细胞受体     
邢雅玲  陈晓娟  陈忠斌 《中国生物化学与分子生物学报》2013,29(10):899-901
中东呼吸道综合征冠状病毒(Middle East respiratory syndrome coronavirus, MERS-CoV)是继SARS冠状病毒(SARS-CoV)之后新近出现的又一种能够引发严重呼吸道感染的人类新发冠状病毒. MERS-CoV于2012年9月首次在中东一些国家被发现,截至2013年9月7日,MERS-CoV已经引起114例感染病例,其中54人死亡,死亡率约50%. 病毒受体研究为MERS-CoV等人类新发冠状病毒进化和跨种传播机制提供重要依据.最近,Raj等在Nature发表文章,首次报道了二肽基肽酶4(dipeptidyl peptidase 4,DPP4;又名CD26)为MERS-CoV感染细胞的功能性受体.MERS-CoV功能性受体的发现为人类新冠状病毒溯源和跨种进化研究、病毒传染和流行病学特征分析以及抗病毒药物和疫苗研究提供重要基础.  相似文献   

17.
Penta-peptide ATN-161 based neutralization mechanism of SARS-CoV-2 spike protein     
Gulam Rabbani  Saeyoung Nate Ahn  Hyunhwa Kwon  Khurshid Ahmad  Inho Choi 《Biochemistry and Biophysics Reports》2021
SARS-CoV-2 has become a big challenge for the scientific community worldwide. SARS-CoV-2 enters into the host cell by the spike protein binding with an ACE2 receptor present on the host cell. Developing safe and effective inhibitor appears an urgent need to interrupt the binding of SARS-CoV-2 spike protein with ACE2 receptor in order to reduce the SARS-CoV-2 infection. We have examined the penta-peptide ATN-161 as potential inhibitor of ACE2 and SARS-CoV-2 spike protein binding, where ATN-161 has been commercially approved for the safety and possess high affinity and specificity towards the receptor binding domain (RBD) of S1 subunit in SARS-CoV-2 spike protein. We carried out experiments and confirmed these phenomena that the virus bindings were indeed minimized. ATN-161 peptide can be used as an inhibitor of protein-protein interaction (PPI) stands as a crucial interaction in biological systems. The molecular docking finding suggests that the binding energy of the ACE2-spike protein complex is reduced in the presence of ATN-161. Protein-protein docking binding energy (-40.50 kcal/mol) of the spike glycoprotein toward the human ACE2 and binding of ATN-161 at their binding interface reduced the biding energy (-26.25 kcal/mol). The finding of this study suggests that ATN-161 peptide can mask the RBD of the spike protein and be considered as a neutralizing candidate by binding with the ACE2 receptor. Peptide-based masking of spike S1 protein (RBD) and its neutralization is a highly promising strategy to prevent virus penetration into the host cell. Thus masking of the RBD leads to the loss of receptor recognition property which can reduce the chance of infection host cells.  相似文献   

18.
Insect cell expression and purification of recombinant SARS‐COV‐2 spike proteins that demonstrate ACE2 binding     
Lucas R. Struble  Audrey L. Smith  William E. Lutz  Gabrielle Grubbs  Satish Sagar  Kenneth W. Bayles  Prakash Radhakrishnan  Surender Khurana  Dalia El&#x;Gamal  Gloria E. O. Borgstahl 《Protein science : a publication of the Protein Society》2022,31(5)
The COVID‐19 pandemic caused by SARS‐CoV‐2 infection has led to socio‐economic shutdowns and the loss of over 5 million lives worldwide. There is a need for the identification of therapeutic targets to treat COVID‐19. SARS‐CoV‐2 spike is a target of interest for the development of therapeutic targets. We developed a robust SARS‐CoV‐2 S spike expression and purification protocol from insect cells and studied four recombinant SARS‐CoV‐2 spike protein constructs based on the original SARS‐CoV‐2 sequence using a baculovirus expression system: a spike protein receptor‐binding domain that includes the SD1 domain (RBD) coupled to a fluorescent tag (S‐RBD‐eGFP), spike ectodomain coupled to a fluorescent tag (S‐Ecto‐eGFP), spike ectodomain with six proline mutations and a foldon domain (S‐Ecto‐HexaPro(+F)), and spike ectodomain with six proline mutations without the foldon domain (S‐Ecto‐HexaPro(‐F)). We tested the yield of purified protein expressed from the insect cell lines Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tni) and compared it to previous research using mammalian cell lines to determine changes in protein yield. We demonstrated quick and inexpensive production of functional glycosylated spike protein of high purity capable of recognizing and binding to the angiotensin converting enzyme 2 (ACE2) receptor. To further confirm functionality, we demonstrate binding of eGFP fused construct of the spike ectodomain (S‐Ecto‐eGFP) to surface ACE2 receptors on lung epithelial cells by flow cytometry analysis and show that it can be decreased by means of receptor manipulation (blockade or downregulation).  相似文献   

19.
The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways     
Manon Laporte  Valerie Raeymaekers  Ria Van Berwaer  Julie Vandeput  Isabel Marchand-Casas  Hendrik-Jan Thibaut  Dominique Van Looveren  Katleen Martens  Markus Hoffmann  Piet Maes  Stefan Phlmann  Lieve Naesens  Annelies Stevaert 《PLoS pathogens》2021,17(4)
The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards the human respiratory tract. First, the S proteins exhibit an intrinsic temperature preference, corresponding with the temperature of the upper or lower airways. Pseudoviruses bearing the SARS-CoV-2 spike (SARS-2-S) were more infectious when produced at 33°C instead of 37°C, a property shared with the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV and MERS-CoV favored 37°C, in accordance with virus preference for the lower airways. Next, SARS-2-S-driven entry was efficiently activated by not only TMPRSS2, but also the TMPRSS13 protease, thus broadening the cell tropism of SARS-CoV-2. Both proteases proved relevant in the context of authentic virus replication. TMPRSS13 appeared an effective spike activator for the virulent coronaviruses but not the low pathogenic HCoV-229E virus. Activation of SARS-2-S by these surface proteases requires processing of the S1/S2 cleavage loop, in which both the furin recognition motif and extended loop length proved critical. Conversely, entry of loop deletion mutants is significantly increased in cathepsin-rich cells. Finally, we demonstrate that the D614G mutation increases SARS-CoV-2 stability, particularly at 37°C, and, enhances its use of the cathepsin L pathway. This indicates a link between S protein stability and usage of this alternative route for virus entry. Since these spike properties may promote virus spread, they potentially explain why the spike-G614 variant has replaced the early D614 variant to become globally predominant. Collectively, our findings reveal adaptive mechanisms whereby the coronavirus spike protein is adjusted to match the temperature and protease conditions of the airways, to enhance virus transmission and pathology.  相似文献   

20.
A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein     
Yan Li  Yuhua Wan  Peipei Liu  Jincun Zhao  Guangwen Lu  Jianxun Qi  Qihui Wang  Xuancheng Lu  Ying Wu  Wenjun Liu  Buchang Zhang  Kwok-Yung Yuen  Stanley Perlman  George F Gao  Jinghua Yan 《Cell research》2015,25(11):1237-1249
The newly-emerging Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans. Despite global efforts, the potential for an associated pandemic in the future cannot be excluded. The development of effective counter-measures is urgent. MERS-CoV-specific anti-viral drugs or vaccines are not yet available. Using the spike receptor-binding domain of MERS-CoV (MERS-RBD) to immunize mice, we identified two neutralizing monoclonal antibodies (mAbs) 4C2 and 2E6. Both mAbs potently bind to MERS-RBD and block virus entry in vitro with high efficacy. We further investigated their mechanisms of neutralization by crystallizing the complex between the Fab fragments and the RBD, and solved the structure of the 4C2 Fab/MERS-RBD complex. The structure showed that 4C2 recognizes an epitope that partially overlaps the receptor-binding footprint in MERS-RBD, thereby interfering with the virus/receptor interactions by both steric hindrance and interface-residue competition. 2E6 also blocks receptor binding, and competes with 4C2 for binding to MERS-RBD. Based on the structure, we further humanized 4C2 by preserving only the paratope residues and substituting the remaining amino acids with the counterparts from human immunoglobulins. The humanized 4C2 (4C2h) antibody sustained similar neutralizing activity and biochemical characteristics to the parental mouse antibody. Finally, we showed that 4C2h can significantly abate the virus titers in lungs of Ad5-hCD26-transduced mice infected with MERS-CoV, therefore representing a promising agent for prophylaxis and therapy in clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号