首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bracoviruses represent the most complex endogenous viral elements (EVEs) described to date. Nudiviral genes have been hosted within parasitoid wasp genomes since approximately 100 Ma. They play a crucial role in the wasp life cycle as they produce bracovirus particles, which are injected into parasitized lepidopteran hosts during wasp oviposition. Bracovirus particles encapsidate multiple dsDNA circles encoding virulence genes. Their expression in parasitized caterpillars is essential for wasp parasitism success. Here, we report on the genomic organization of the proviral segments (i.e. master sequences used to produce the encapsidated dsDNA circles) present in the Cotesia congregata parasitoid wasp genome. The provirus is composed of a macrolocus, comprising two-thirds of the proviral segments and of seven dispersed loci, each containing one to three segments. Comparative genomic analyses with closely related species gave insights into the evolutionary dynamics of bracovirus genomes. Conserved synteny in the different wasp genomes showed the orthology of the proviral macrolocus across different species. The nudiviral gene odv-e66-like1 is conserved within the macrolocus, suggesting an ancient co-localization of the nudiviral genome and bracovirus proviral segments. By contrast, the evolution of proviral segments within the macrolocus has involved a series of lineage-specific duplications.  相似文献   

2.

Background

Polydnaviruses, double-stranded DNA viruses with segmented genomes, have evolved as obligate endosymbionts of parasitoid wasps. Virus particles are replication deficient and produced by female wasps from proviral sequences integrated into the wasp genome. These particles are co-injected with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and, thereby, survival of proviral DNA. Here we characterize and compare the encapsidated viral genome sequences of bracoviruses in the family Polydnaviridae associated with Glyptapanteles gypsy moth parasitoids, along with near complete proviral sequences from which both viral genomes are derived.

Results

The encapsidated Glyptapanteles indiensis and Glyptapanteles flavicoxis bracoviral genomes, each composed of 29 different size segments, total approximately 517 and 594 kbp, respectively. They are generated from a minimum of seven distinct loci in the wasp genome. Annotation of these sequences revealed numerous novel features for polydnaviruses, including insect-like sugar transporter genes and transposable elements. Evolutionary analyses suggest that positive selection is widespread among bracoviral genes.

Conclusions

The structure and organization of G. indiensis and G. flavicoxis bracovirus proviral segments as multiple loci containing one to many viral segments, flanked and separated by wasp gene-encoding DNA, is confirmed. Rapid evolution of bracovirus genes supports the hypothesis of bracovirus genes in an 'arms race' between bracovirus and caterpillar. Phylogenetic analyses of the bracoviral genes encoding sugar transporters provides the first robust evidence of a wasp origin for some polydnavirus genes. We hypothesize transposable elements, such as those described here, could facilitate transfer of genes between proviral segments and host DNA.  相似文献   

3.
Very few obligatory relationships involve viruses to the remarkable exception of polydnaviruses (PDVs) associated with tens of thousands species of parasitic wasps that develop within the body of lepidopteran larvae. PDV particles, injected along with parasite eggs into the host body, act by manipulating host immune defences, development and physiology, thereby enabling wasp larvae to survive in a potentially harmful environment. Particle production does not occur in infected tissues of parasitized caterpillars, but is restricted to specialized cells of the wasp ovaries. Moreover, the genome enclosed in the particles encodes almost no viral structural protein, but mostly factors used to manipulate the physiology of the parasitized host. We recently unravelled the viral nature of PDVs associated with braconid wasps by characterizing a large set of nudivirus genes residing permanently in the wasp chromosome(s). Many of these genes encode structural components of the bracovirus particles and their expression pattern correlates with particle production. They constitute a viral machinery comprising a large number of core genes shared by nudiviruses and baculoviruses. Thus bracoviruses do not appear to be nudiviruses remnants, but instead complex nudiviral devices carrying DNA for the delivery of virulence genes into lepidopteran hosts. This highlights the fact that viruses should no longer be exclusively considered obligatory parasites, and that in certain cases they are obligatory symbionts.  相似文献   

4.
The family Polydnaviridae is of interest because it provides the best example of viruses that have evolved a mutualistic association with their animal hosts. Polydnaviruses in the genus Bracovirus are strictly associated with parasitoid wasps in the family Braconidae, and evolved ∼100 million years ago from a nudivirus. Each wasp species relies on its associated bracovirus to parasitize hosts, while each bracovirus relies on its wasp for vertical transmission. Prior studies establish that bracovirus genomes consist of proviral segments and nudivirus-like replication genes, but how these components are organized in the genomes of wasps is unknown. Here, we sequenced the genome of the wasp Microplitis demolitor to characterize the proviral genome of M. demolitor bracovirus (MdBV). Unlike nudiviruses, bracoviruses produce virions that package multiple circular, double-stranded DNAs. DNA segments packaged into MdBV virions resided in eight dispersed loci in the M. demolitor genome. Each proviral segment was bounded by homologous motifs that guide processing to form mature viral DNAs. Rapid evolution of proviral segments obscured homology between other bracovirus-carrying wasps and MdBV. However, some domains flanking MdBV proviral loci were shared with other species. All MdBV genes previously identified to encode proteins required for replication were identified. Some of these genes resided in a multigene cluster but others, including subunits of the RNA polymerase that transcribes structural genes and integrases that process proviral segments, were widely dispersed in the M. demolitor genome. Overall, our results indicate that genome dispersal is a key feature in the evolution of bracoviruses into mutualists.  相似文献   

5.

Background

Bracoviruses (BVs), a group of double-stranded DNA viruses with segmented genomes, are mutualistic endosymbionts of parasitoid wasps. Virus particles are replication deficient and are produced only by female wasps from proviral sequences integrated into the wasp genome. Virus particles are injected along with eggs into caterpillar hosts, where viral gene expression facilitates parasitoid survival and therefore perpetuation of proviral DNA. Here we describe a 223 kbp region of Glyptapanteles indiensis genomic DNA which contains a part of the G. indiensis bracovirus (GiBV) proviral genome.

Results

Eighteen of ~24 GiBV viral segment sequences are encoded by 7 non-overlapping sets of BAC clones, revealing that some proviral segment sequences are separated by long stretches of intervening DNA. Two overlapping BACs, which contain a locus of 8 tandemly arrayed proviral segments flanked on either side by ~35 kbp of non-packaged DNA, were sequenced and annotated. Structural and compositional analyses of this cluster revealed it exhibits a G+C and nucleotide composition distinct from the flanking DNA. By analyzing sequence polymorphisms in the 8 GiBV viral segment sequences, we found evidence for widespread selection acting on both protein-coding and non-coding DNA. Comparative analysis of viral and proviral segment sequences revealed a sequence motif involved in the excision of proviral genome segments which is highly conserved in two other bracoviruses.

Conclusion

Contrary to current concepts of bracovirus proviral genome organization our results demonstrate that some but not all GiBV proviral segment sequences exist in a tandem array. Unexpectedly, non-coding DNA in the 8 proviral genome segments which typically occupies ~70% of BV viral genomes is under selection pressure suggesting it serves some function(s). We hypothesize that selection acting on GiBV proviral sequences maintains the genetic island-like nature of the cluster of proviral genome segments described herein. In contrast to large differences in the predicted gene composition of BV genomes, sequences that appear to mediate processes of viral segment formation, such as proviral segment excision and circularization, appear to be highly conserved, supporting the hypothesis of a single origin for BVs.  相似文献   

6.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.  相似文献   

7.
A 535 base pair DNA fragment which maps entirely within the IRS/TRS regions of the herpes simplex virus type 1 (HSV-1) genome and contains all the cis-acting signals necessary for it to function as an origin of viral DNA replication has previously been identified (N.D. Stow and E.C. McMonagle, Virology, in press). When BHK cells were transfected with circular plasmid molecules containing cloned copies of this DNA fragment, and superinfected with wt HSV-1 as helper, amplification of the input plasmid was detected. Two observations indicated that the amplified DNA was not packaged into virus particles. Firstly, when the transfected cells were disrupted the amplified DNA was susceptible to digestion by added DNase, and secondly, it was not possible to further propagate the DNA when virus from the cells was passaged. Fragments from the joint region and from both termini of the viral genome were inserted into origin-containing plasmids and the resulting constructs analysed. In all cases the inserted fragment allowed the amplified DNA to be further passaged, and a proportion to become resistant to digestion with DNase. These observations suggest that signals required for the encapsidation of HSV-1 DNA are located within DNA sequences shared by the inserted fragments and therefore lie within the reiterated 'a' sequence of the viral genome.  相似文献   

8.
Insects are known to host a wide variety of beneficial microbes that are fundamental to many aspects of their biology and have substantially shaped their evolution. Notably, parasitoid wasps have repeatedly evolved beneficial associations with viruses that enable developing wasps to survive as parasites that feed from other insects. Ongoing genomic sequencing efforts have revealed that most of these virus-derived entities are fully integrated into the genomes of parasitoid wasp lineages, representing endogenous viral elements (EVEs) that retain the ability to produce virus or virus-like particles within wasp reproductive tissues. All documented parasitoid EVEs have undergone similar genomic rearrangements compared to their viral ancestors characterized by viral genes scattered across wasp genomes and specific viral gene losses. The recurrent presence of viral endogenization and genomic reorganization in beneficial virus systems identified to date suggest that these features are crucial to forming heritable alliances between parasitoid wasps and viruses. Here, our genomic characterization of a mutualistic poxvirus associated with the wasp Diachasmimorpha longicaudata, known as Diachasmimorpha longicaudata entomopoxvirus (DlEPV), has uncovered the first instance of beneficial virus evolution that does not conform to the genomic architecture shared by parasitoid EVEs with which it displays evolutionary convergence. Rather, DlEPV retains the exogenous viral genome of its poxvirus ancestor and the majority of conserved poxvirus core genes. Additional comparative analyses indicate that DlEPV is related to a fly pathogen and contains a novel gene expansion that may be adaptive to its symbiotic role. Finally, differential expression analysis during virus replication in wasps and fly hosts demonstrates a unique mechanism of functional partitioning that allows DlEPV to persist within and provide benefit to its parasitoid wasp host.  相似文献   

9.
Direct or inverse repeated sequences are important functional features of prokaryotic and eukaryotic genomes. Considering the unique mechanism, involving single-stranded genomic intermediates, by which adenovirus (Ad) replicates its genome, we investigated whether repetitive homologous sequences inserted into E1-deleted adenoviral vectors would affect replication of viral DNA. In these studies we found that inverted repeats (IRs) inserted into the E1 region could mediate predictable genomic rearrangements, resulting in vector genomes devoid of all viral genes. These genomes (termed DeltaAd.IR) contained only the transgene cassette flanked on both sides by precisely duplicated IRs, Ad packaging signals, and Ad inverted terminal repeat sequences. Generation of DeltaAd.IR genomes could also be achieved by coinfecting two viruses, each providing one inverse homology element. The formation of DeltaAd.IR genomes required Ad DNA replication and appeared to involve recombination between the homologous inverted sequences. The formation of DeltaAd. IR genomes did not depend on the sequence within or adjacent to the inverted repeat elements. The small DeltaAd.IR vector genomes were efficiently packaged into functional Ad particles. All functions for DeltaAd.IR replication and packaging were provided by the full-length genome amplified in the same cell. DeltaAd.IR vectors were produced at a yield of approximately 10(4) particles per cell, which could be separated from virions with full-length genomes based on their lighter buoyant density. DeltaAd.IR vectors infected cultured cells with the same efficiency as first-generation vectors; however, transgene expression was only transient due to the instability of deleted genomes within transduced cells. The finding that IRs present within Ad vector genomes can mediate precise genetic rearrangements has important implications for the development of new vectors for gene therapy approaches.  相似文献   

10.
Liang Y  Hong Y  Parslow TG 《Journal of virology》2005,79(16):10348-10355
The influenza A virus genome consists of eight negative-sense RNA segments. The cis-acting signals that allow these viral RNA segments (vRNAs) to be packaged into influenza virus particles have not been fully elucidated, although the 5' and 3' untranslated regions (UTRs) of each vRNA are known to be required. Efficient packaging of the NA, HA, and NS segments also requires coding sequences immediately adjacent to the UTRs, but it is not yet known whether the same is true of other vRNAs. By assaying packaging of genetically tagged vRNA reporters during plasmid-directed influenza virus assembly in cells, we have now mapped cis-acting sequences that are sufficient for packaging of the PA, PB1, and PB2 segments. We find that each involves portions of the distal coding regions. Efficient packaging of the PA or PB1 vRNAs requires at least 40 bases of 5' and 66 bases of 3' coding sequences, whereas packaging of the PB2 segment requires at least 80 bases of 5' coding region but is independent of coding sequences at the 3' end. Interestingly, artificial reporter vRNAs carrying mismatched ends (i.e., whose 5' and 3' ends are derived from different vRNA segments) were poorly packaged, implying that the two ends of any given vRNA may collaborate in forming specific structures to be recognized by the viral packaging machinery.  相似文献   

11.
Packaging signals in alphaviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.  相似文献   

12.
Polydnavirus genomes and viral gene functions are atypical for viruses. Polydnaviruses are the only group of viruses with segmented DNA genomes and have an unusual obligate mutualistic association with parasitic Hymenoptera, in which the virus is required for survival of the wasp host and vice versa. The virus replicates asymptomatically in the wasp host but severely disrupts lepidopteran host physiology in the absence of viral DNA replication. It is not surprising then that viral gene expression is divergent in its two insect hosts and that differences in viral gene expression are linked to these divergent functions. Some viral genes are expressed only in the wasp host while other viral genes are expressed only in the lepidopteran host and are presumed to be involved in the disruption of host physiological systems. Our laboratory has described the expression and regulation of a family of viral genes implicated in suppressing the lepidopteran immune system, the cys-motif genes. In conjunction with these studies we have described the physical organization of additional viral gene segments. We have cloned, mapped and begun the sequence analysis of selected viral DNA segments. We have noted that some viral DNA segments are nested and that nested viral DNA segments encode the abundantly expressed, secreted cys-motif genes. Conversely, other viral segments are not nested, encode less abundantly expressed genes and may be targeted intra-cellularly. These results suggest that nesting of segments in polydnavirus genomes may be linked to the levels of gene expression. By extension, the unique, segmented organization of polydnavirus genomes may be associated, in part, with the requirement for divergent levels of viral gene expression in lepidopteran hosts in the absence of viral DNA replication.  相似文献   

13.
We have constructed a series of deletion mutants spanning the genome of duck hepatitis B virus in order to determine which regions of the viral genome are required in cis for packaging of the pregenome into capsid particles. Deletion of sequences within either of two nonadjacent regions prevented replication of the mutant viral genomes expressed in a permissive avian hepatoma cell line in the presence of functionally active viral core and P proteins. Extraction of RNA from cells transfected with these replication-defective mutants showed that the mutants retained the capacity to be transcribed into a pregenomic-size viral RNA, but that these RNA species were not packaged into viral capsids. The two regions defined by these deletions are located 36 to 126 (region I) and 1046 to 1214 (region II) nucleotides downstream of the 5' end of the pregenome and contain sequences which are required in cis for encapsidation of the duck hepatitis B virus pregenome.  相似文献   

14.
J L Battini  J M Heard    O Danos 《Journal of virology》1992,66(3):1468-1475
The envelope glycoproteins (SU) of mammalian type C retroviruses possess an amino-terminal domain of about 200 residues, which is involved in binding a cell surface receptor. In this domain, highly conserved amino acid sequences are interrupted by two segments of variable length and sequence, VRA and VRB. We have studied the role of these variable regions in receptor recognition and binding by constructing chimeric molecules in which portions of the amino-terminal domains from amphotropic (4070A), xenotropic (NZB), and polytropic (MCF 247) murine leukemia virus SU proteins were permuted. These chimeras, which exchanged either one or two variable regions, were expressed at the surface of replication-defective viral particles by a pseudotyping assay. Wild-type or recombinant env genes were transfected into a cell line producing Moloney murine leukemia virus particles devoid of envelope glycoproteins in which a retrovirus vector genome carrying an Escherichia coli lacZ gene was packaged. The host range and sensitivity to interference of pseudotyped virions were assayed, and we observed which permutations resulted in receptor switch or loss of function. Our results indicate that the determinants of receptor choice are found within the just 120 amino acids of SU proteins. Downstream sequences contribute to the stabilization of the receptor-specific structure.  相似文献   

15.
Polydnaviruses, obligatorily associated with endoparasitoid wasps, are unique in that their segmented genome is composed of multiple double-stranded DNA circles. We present here the first cytological evidence that virus segments are integrated in the wasp genome, obtained by using in situ hybridization of virus probes with viral sequences in the chromosomes of a wasp from the braconid family of hymenopterans.  相似文献   

16.
During oviposition, many endoparasitic wasps inject virus-like particles into their insect hosts that enable these parasitoids to evade or directly suppress their hosts' immune system, especially encapsulation by hemocytes. These particles are defined as virions that belong to viruses of the two genera that comprise the family Polydnaviridae, bracoviruses (genus Bracovirus) transmitted by braconid wasps, and ichnoviruses (genus Ichnovirus) transmitted by ichneumonid wasps. Structurally, bracovirus virions resemble nudivirus and baculovirus virions (family Baculoviridae), and ichnovirus virions resemble those of ascoviruses (family Ascoviridae). Whereas nudiviruses, baculoviruses and ascoviruses replicate their DNA and produce progeny virions, polydnavirus DNA is integrated into and replicated from the wasp genome, which also directs virion synthesis. The structural similarity of polydnavirus virions to those of viruses that attack the wasps' lepidopteran hosts, along with polydnavirus transmission and replication biology, suggest that these viruses evolved from insect DNA viruses by symbiogenesis, the same process by which mitochondia and chloroplasts evolved from bacteria. Molecular evidence supporting this hypothesis comes from similarities among structural proteins of ascoviruses and the Campoletis sonorensis ichnovirus. Implications of this hypothesis are that polydnaviruses evolved from viruses, but are no longer viruses, and that DNA packaged into polydnavirus virions is not viral genomic DNA per se, but rather wasp genomic DNA consisting primarily of wasp genes and non-coding DNA. Thus, we suggest that a better understanding of polydnaviruses would result by viewing these not as viruses, but rather as a wasp organelle system that evolved to shuttle wasp genes and proteins into hosts to evade and suppress their immune response.  相似文献   

17.
Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.  相似文献   

18.
L Cui  B A Webb 《Journal of virology》1997,71(11):8504-8513
Polydnaviruses (PDVs) are double-stranded DNA viruses with segmented genomes that replicate only in the oviducts of some species of parasitic wasps and are required for the successful parasitization of lepidopteran insects. PDV DNA segments are integrated in the genomes of their associated wasp hosts, and some are nested; i.e., smaller segments are produced from and largely colinear with larger segments. To determine the internal structure of nested viral segments, the first complete nucleotide sequence of a PDV genome segment and its integration locus was determined. By restriction mapping, Southern blot, and sequence analyses, we demonstrated that the Campoletis sonorensis PDV segment W is integrated into wasp genomic DNA. DNA sequence analysis revealed that proviral segment W terminates in two 1,185-bp direct long terminal repeats (LTRs) in the wasp chromosome, while only one LTR copy is present in the extrachromosomal (viral) W. The results suggest that terminal direct repeats are a general feature of PDV DNA segment integration but that the homology and size of the repeats can vary extensively. Segment W contains 12 imperfect direct repeats of six different types between 89 bp and 1.9 kbp with 65 to 90% homology. The orientation and structure of the repeats suggest that W itself may have arisen through sequence duplication and subsequent divergence. Mapping, hybridization, and sequence analyses of cloned R and M demonstrated that these segments are nested within segment W and that internal imperfect direct repeats of one type are implicated in the homologous intramolecular recombination events that generate segments R and M. Interestingly, segment nesting differentially increases the copy number of genes encoded by segment W, suggesting that the unusual genomic organization of PDVs may be directly linked to the unique functions of this virus in its obligate mutualistic association with parasitic wasps.  相似文献   

19.
The influenza A virus genome consists of eight negative-sense RNA segments that must each be packaged to produce an infectious virion. We have previously mapped the minimal cis-acting regions necessary for efficient packaging of the PA, PB1, and PB2 segments, which encode the three protein subunits of the viral RNA polymerase. The packaging signals in each of these RNAs lie within two separate regions at the 3′ and 5′ termini, each encompassing the untranslated region and extending up to 80 bases into the adjacent coding sequence. In this study, we introduced scanning mutations across the coding regions in each of these RNA segments in order to finely define the packaging signals. We found that mutations producing the most severe defects were confined to a few discrete 5′ sites in the PA or PB1 coding regions but extended across the entire (80-base) 5′ coding region of PB2. In sequence comparisons among more than 580 influenza A strains from diverse hosts, these highly deleterious mutations were each found to affect one or more conserved bases, though they did not all lie within the most broadly conserved portions of the regions that we interrogated. We have introduced silent and conserved mutations to the critical packaging sites, which did not affect protein function but impaired viral replication at levels roughly similar to those of their defects in RNA packaging. Interestingly, certain mutations showed strong tendencies to revert to wild-type sequences, which implies that these putative packaging signals are critical for the influenza life cycle.  相似文献   

20.
The Polydnaviridae (PDV), including the Bracovirus (BV) and Ichnovirus genera, originated from the integration of unrelated viruses in the genomes of two parasitoid wasp lineages, in a remarkable example of convergent evolution. Functionally active PDVs represent the most compelling evolutionary success among endogenous viral elements (EVEs). BV evolved from the domestication by braconid wasps of a nudivirus 100 Ma. The nudivirus genome has become an EVE involved in BV particle production but is not encapsidated. Instead, BV genomes have co-opted virulence genes, used by the wasps to control the immunity and development of their hosts. Gene transfers and duplications have shaped BV genomes, now encoding hundreds of genes. Phylogenomic studies suggest that BVs contribute largely to wasp diversification and adaptation to their hosts. A genome evolution model explains how multidirectional wasp adaptation to different host species could have fostered PDV genome extension. Integrative studies linking ecological data on the wasp to genomic analyses should provide new insights into the adaptive role of particular BV genes. Forthcoming genomic advances should also indicate if the associations between endoparasitoid wasps and symbiotic viruses evolved because of their particularly intimate interactions with their hosts, or if similar domesticated EVEs could be uncovered in other parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号