首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.  相似文献   

2.
Protein-arginine methyltransferases aid in the regulation of many biological processes by methylating specific arginyl groups within targeted proteins. The varied nature of the response to methylation is due in part to the diverse product specificity displayed by the protein-arginine methyltransferases. In addition to site location within a protein, biological response is also determined by the degree (mono-/dimethylation) and type of arginine dimethylation (asymmetric/symmetric). Here, we have identified two strictly conserved methionine residues in the PRMT1 active site that are not only important for activity but also control substrate specificity. Mutation of Met-155 or Met-48 results in a loss in activity and a change in distribution of mono- and dimethylated products. The altered substrate specificity of M155A and M48L mutants is also evidenced by automethylation. Investigation into the mechanistic basis of altered substrate recognition led us to consider each methyl transfer step separately. Single turnover experiments reveal that the rate of transfer of the second methyl group is much slower than transfer of the first methyl group in M48L, especially for arginine residues located in the center of the peptide substrate where turnover of the monomethylated species is negligible. Thus, altered product specificity in M48L originates from the differential effect of the mutation on the two rates. Characterization of the two active-site methionines provides the first insight into how the PRMT1 active site is engineered to control product specificity.  相似文献   

3.
Protein arginine methyltransferases (PRMTs) are a family of mammalian enzymes catalyzing the symmetric dimethylation (Type I), asymmetric dimethylation (Type II), or monomethylation (Type III) of arginine residues within proteins. This family is composed of 11 isozymes, however the vast majority of asymmetric and symmetric dimethylation in mammals is completed by either PRMT1 or PRMT5, respectively. In recent years, a number of chemical probes targeting this family of enzymes have been developed, but the majority of these probes lack isozyme specificity. Herein, we report the development of a chemical probe, based on a non-natural peptide sequence, which specifically labels PRMT1 over PRMT5 with high selectivity and sensitivity.  相似文献   

4.
Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.  相似文献   

5.
Kong X  Ouyang S  Liang Z  Lu J  Chen L  Shen B  Li D  Zheng M  Li KK  Luo C  Jiang H 《PloS one》2011,6(9):e25444
Lysine-specific demethylase 1 (LSD1), the first identified histone demethylase, is a flavin-dependent amine oxidase which specifically demethylates mono- or dimethylated H3K4 and H3K9 via a redox process. It participates in a broad spectrum of biological processes and is of high importance in cell proliferation, adipogenesis, spermatogenesis, chromosome segregation and embryonic development. To date, as a potential drug target for discovering anti-tumor drugs, the medical significance of LSD1 has been greatly appreciated. However, the catalytic mechanism for the rate-limiting reductive half-reaction in demethylation remains controversial. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, the catalytic mechanism of dimethylated H3K4 demethylation by LSD1 was characterized in details. The three-dimensional (3D) model of the complex was composed of LSD1, CoREST, and histone substrate. A 30-ns MD simulation of the model highlights the pivotal role of the conserved Tyr761 and lysine-water-flavin motif in properly orienting flavin adenine dinucleotide (FAD) with respect to substrate. The synergy of the two factors effectively stabilizes the catalytic environment and facilitated the demethylation reaction. On the basis of the reasonable consistence between simulation results and available mutagenesis data, QM/MM strategy was further employed to probe the catalytic mechanism of the reductive half-reaction in demethylation. The characteristics of the demethylation pathway determined by the potential energy surface and charge distribution analysis indicates that this reaction belongs to the direct hydride transfer mechanism. Our study provides insights into the LSD1 mechanism of reductive half-reaction in demethylation and has important implications for the discovery of regulators against LSD1 enzymes.  相似文献   

6.
Protein arginine methyltransferase 1 (PRMT1) catalyses the methylation of substrate arginine by transferring the methyl group from SAM (S-adenosyl-l-methionine), which leads to the formation of S-adenosyl homocysteine (SAH) and methylated arginine. We have shown previously that the Asp84 on PRMT1 could be a potential inhibitor binding site. In the current study, 28 compounds were designed and synthesized that were predicted to bind the Asp84 and substrate arginine sites together. Among them, 6 compounds were identified as potential PRMT1 inhibitors, and showed strong inhibitory effects on cancer cell lines, especially HepG2. The most potent PRMT1 inhibitor, compound 13d, was selected for molecular dynamic simulations to investigate binding poses. Based on the free energy calculations and structural analysis, we predicted that the ethylenediamine group would tightly bind to Asp84, and the trifluoromethyl group should occupy part of substrate arginine binding site, which is consistent with our original goal. Our results show for the first time that PRMT1 inhibitors can target the Asp84 binding site, which will be helpful for future drug discovery studies.  相似文献   

7.
Protein arginine methyltransferase 5 (PRMT5), a histone methyltransferase responsible for the symmetric dimethylation of histone H4 on Arg 3 (H4R3me2s), is an enzyme that participates in tumor cell progression in a variety of hematological malignancies. However, the biological functions of PRMT5 in multiple myeloma (MM) and the underlying molecular mechanisms remain unclear. In this study, we conducted a bioinformatics analysis and found that PRMT5 expression was significantly upregulated in MM. In vitro and in vivo phenotypic experiments revealed that knockdown of PRMT5 expression enhanced cell pyroptosis in MM. Moreover, we found that CASP1 expression was negatively correlated with PRMT5 expression, and repressing PRMT5 expression rescued both the phenotype and expression markers (N-GSDMD, IL-1b, and IL-18). Inhibition of PRMT5 activity increased CASP1 expression and promoted MM cell pyroptosis. Finally, high expression of PRMT5 or low expression of CASP1 was correlated with poor overall survival in MM. Collectively, our results provide a mechanism by which PRMT5 regulates cell pyroptosis by silencing CASP1 in MM.Subject terms: Myeloma, Enzyme mechanisms  相似文献   

8.
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds.  相似文献   

9.
Hydrogen bonding and polar interactions play a key role in identification of protein-inhibitor binding specificity. Quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations combined with DFT and semi-empirical Hamiltonian (AM1d, RM1, PM3, and PM6) methods were performed to study the hydrogen bonding and polar interactions of two inhibitors BEN and BEN1 with trypsin. The results show that the accuracy of treating the hydrogen bonding and polar interactions using QM/MM MD simulation of PM6 can reach the one obtained by the DFT QM/MM MD simulation. Quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA) method was applied to calculate binding affinities of inhibitors to trypsin and the results suggest that the accuracy of binding affinity prediction can be significantly affected by the accurate treatment of the hydrogen bonding and polar interactions. In addition, the calculated results also reveal the binding specificity of trypsin: (1) the amidinium groups of two inhibitors generate favorable salt bridge interaction with Asp189 and form hydrogen bonding interactions with Ser190 and Gly214, (2) the phenyl of inhibitors can produce favorable van der Waals interactions with the residues His58, Cys191, Gln192, Trp211, Gly212, and Cys215. This systematic and comparative study can provide guidance for the choice of QM/MM MD methods and the designs of new potent inhibitors targeting trypsin.  相似文献   

10.
Arginine methylation is a post-translational modification found mostly in RNA-binding proteins. Poly(A)-binding protein II from calf thymus was shown by mass spectrometry and sequencing to contain NG, NG-dimethylarginine at 13 positions in its amino acid sequence. Two additional arginine residues were partially methylated. Almost all of the modified residues were found in Arg-Xaa-Arg clusters in the C terminus of the protein. These motifs are distinct from Arg-Gly-Gly motifs that have been previously described as sites and specificity determinants for asymmetric arginine dimethylation. Poly(A)-binding protein II and deletion mutants expressed in Escherichia coli were in vitro substrates for two mammalian protein arginine methyltransferases, PRMT1 and PRMT3, with S-adenosyl-L-methionine as the methyl group donor. Both PRMT1 and PRMT3 specifically methylated arginines in the C-terminal domain corresponding to the naturally modified sites.  相似文献   

11.
12.
Jiang J  Lu J  Lu D  Liang Z  Li L  Ouyang S  Kong X  Jiang H  Shen B  Luo C 《PloS one》2012,7(5):e36660
The histone acetylation of post-translational modification can be highly dynamic and play a crucial role in regulating cellular proliferation, survival, differentiation and motility. Of the enzymes that mediate post-translation modifications, the GCN5 of the histone acetyltransferase (HAT) proteins family that add acetyl groups to target lysine residues within histones, has been most extensively studied. According to the mechanism studies of GCN5 related proteins, two key processes, deprotonation and acetylation, must be involved. However, as a fundamental issue, the structure of hGCN5/AcCoA/pH3 remains elusive. Although biological experiments have proved that GCN5 mediates the acetylation process through the sequential mechanism pathway, a dynamic view of the catalytic process and the molecular basis for hGCN5/AcCoA/pH3 are still not available and none of theoretical studies has been reported to other related enzymes in HAT family. To explore the molecular basis for the catalytic mechanism, computational approaches including molecular modeling, molecular dynamic (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) simulation were carried out. The initial hGCN5/AcCoA/pH3 complex structure was modeled and a reasonable snapshot was extracted from the trajectory of a 20 ns MD simulation, with considering post-MD analysis and reported experimental results. Those residues playing crucial roles in binding affinity and acetylation reaction were comprehensively investigated. It demonstrated Glu80 acted as the general base for deprotonation of Lys171 from H3. Furthermore, the two-dimensional QM/MM potential energy surface was employed to study the sequential pathway acetylation mechanism. Energy barriers of addition-elimination reaction in acetylation obtained from QM/MM calculation indicated the point of the intermediate ternary complex. Our study may provide insights into the detailed mechanism for acetylation reaction of GCN5, and has important implications for the discovery of regulators against GCN5 enzymes and related HAT family enzymes.  相似文献   

13.
Zhang X  Bruice TC 《Biochemistry》2007,46(18):5505-5514
Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations have been carried out in an investigation of Rubisco large subunit methyltransferase (LSMT). It was found that the appearance of a water channel is required for the stepwise methylation by S-adenosylmethionine (AdoMet). The water channel appears in the presence of AdoMet (LSMT.Lys-NH3+.AdoMet), but is not present immediately after methyl transfer (LSMT.Lys-N(Me)H2+.AdoHcy). The water channel allows proton dissociation from both LSMT.AdoMet.Lys-NH3+ and LSMT.AdoMet.Lys-N(Me)H2+. The water channel does not appear for proton dissociation from LSMT.AdoMet.Lys-N(Me)2H+, and a third methyl transfer does not occur. By QM/MM, the calculated free energy barrier of the first methyl transfer reaction catalyzed by LSMT (Lys-NH2 + AdoMet --> Lys-N(Me)H2+ + AdoHcy) is DeltaG++ = 22.8 +/- 3.3 kcal/mol. This DeltaG++ is in remarkable agreement with the value 23.0 kcal/mol calculated from the experimental rate constant (6.2 x 10-5 s-1). The calculated DeltaG++ of the second methyl transfer reaction (AdoMet + Lys-N(Me)H --> AdoHcy + Lys-N(Me)2H+) at the QM/MM level is 20.5 +/- 3.6 kcal/mol, which is in agreement with the value 22.0 kcal/mol calculated from the experimental rate constant (2.5 x 10-4 s-1). The third methyl transfer (Lys-N(Me)2 + AdoMet --> Lys-N(Me)3+ + AdoHcy) is associated with an allowed DeltaG++ of 25.9 +/- 3.2 kcal/mol. However, this reaction does not occur because a water channel does not form to allow the proton dissociation of Lys-N(Me)2H+. Future studies will determine whether the product specificity of lysine (mono, di, and tri) methyltransferases is determined by the formation of water channels.  相似文献   

14.
Feng Y  Xie N  Jin M  Stahley MR  Stivers JT  Zheng YG 《Biochemistry》2011,50(32):7033-7044
Post-translational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well-studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well-defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.  相似文献   

15.
Obianyo O  Osborne TC  Thompson PR 《Biochemistry》2008,47(39):10420-10427
Protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and dimethylation of peptidyl arginine residues. Although all PRMTs produce monomethyl arginine (MMA), type 1 PRMTs go on to form asymmetrically dimethylated arginine (ADMA), while type 2 enzymes form symmetrically dimethylated arginine (SDMA). PRMT1 is the major type 1 PRMT in vivo, thus it is the primary producer of the competitive NOS inhibitor, ADMA. Hence, potent inhibitors, which are highly selective for this particular isozyme, could serve as excellent therapeutics for heart disease. However, the design of such inhibitors is impeded by a lack of information regarding this enzyme's kinetic and catalytic mechanisms. Herein we report an analysis of the kinetic mechanism of human PRMT1 using both an unmethylated and a monomethylated substrate peptide based on the N-terminus of histone H4. The results of initial velocity and product and dead-end inhibition experiments indicate that PRMT1 utilizes a rapid equilibrium random mechanism with the formation of dead-end EAP and EBQ complexes. This mechanism is gratifyingly consistent with previous results demonstrating that PRMT1 catalyzes substrate dimethylation in a partially processive manner.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is a late onset and progressive motor neuron disease. Mutations in the gene coding for fused in sarcoma/translocated in liposarcoma (FUS) are responsible for some cases of both familial and sporadic forms of ALS. The mechanism through which mutations of FUS result in motor neuron degeneration and loss is not known. FUS belongs to the family of TET proteins, which are regulated at the post-translational level by arginine methylation. Here, we investigated the impact of arginine methylation in the pathogenesis of FUS-related ALS. We found that wild type FUS (FUS-WT) specifically interacts with protein arginine methyltransferases 1 and 8 (PRMT1 and PRMT8) and undergoes asymmetric dimethylation in cultured cells. ALS-causing FUS mutants retained the ability to interact with both PRMT1 and PRMT8 and undergo asymmetric dimethylation similar to FUS-WT. Importantly, PRMT1 and PRMT8 localized to mutant FUS-positive inclusion bodies. Pharmacologic inhibition of PRMT1 and PRMT8 activity reduced both the nuclear and cytoplasmic accumulation of FUS-WT and ALS-associated FUS mutants in motor neuron-derived cells and in cells obtained from an ALS patient carrying the R518G mutation. Genetic ablation of the fly homologue of human PRMT1 (DART1) exacerbated the neurodegeneration induced by overexpression of FUS-WT and R521H FUS mutant in a Drosophila model of FUS-related ALS. These results support a role for arginine methylation in the pathogenesis of FUS-related ALS.  相似文献   

17.
BVR-B (biliverdin-IXbeta reductase) also known as FR (flavin reductase) is a promiscuous enzyme catalysing the pyridine-nucleotide-dependent reduction of a variety of flavins, biliverdins, PQQ (pyrroloquinoline quinone) and ferric ion. Mechanistically it is a good model for BVR-A (biliverdin-IXalpha reductase), a potential pharmacological target for neonatal jaundice and also a potential target for adjunct therapy to maintain protective levels of biliverdin-IXalpha during organ transplantation. In a commentary on the structure of BVR-B it was noted that one outstanding issue remained: whether the mechanism was a concerted hydride transfer followed by protonation of a pyrrolic anion or protonation of the pyrrole followed by hydride transfer. In the present study we have attempted to address this question using QM/MM (quantum mechanics/molecular mechanics) calculations. QM/MM potential energy surfaces show that the lowest energy pathway proceeds with a positively charged pyrrole intermediate via two transition states. These initial calculations were performed with His(153) as the source of the proton. However site-directed mutagenesis studies with both the H153A and the H153N mutant reveal that His(153) is not required for catalytic activity. We have repeated the calculation with a solvent hydroxonium donor and obtain a similar energy landscape indicating that protonation of the pyrrole is the most likely first step followed by hydride transfer and that the required proton may come from bulk solvent. The implications of the present study for the design of inhibitors of BVR-A are discussed.  相似文献   

18.
New Delhi metallo-beta-lactamase 1 (NDM-1) has been identified as a potential target for the treatment of multi-drug resistance bacterial infections. We used molecular docking, normal MD, SIE, QM/MM MD simulations, QM/MM GBSA binding free energy, and QM/MM GBSA alanine-scanning mutagenesis techniques to investigate interactions of the NDM-1 with 11 inhibitors (Tigecycline, BAL30072, D-captopril, Penicillin G, Ampicillin, Carbenicillin, Cephalexin, Cefaclor, Nitrocefin, Meropenem, and Imipenem). From our normal MD and QM/MM simulations, the correlation coefficients between the predicted binding free energies and experimental values are .88 and .93, respectively. Then simulations, which combined QM/MM/GBSA and alanine-scanning mutagenesis techniques, were performed and our results show that two residues (Lys211 and His250) have the strongest impact on the binding affinities of the 11 NDM-1/inhibitors. Therefore, our approach theoretically suggests that the two residues (Lys211 and His250) are responsible for the selectivity of NDM-1 associated inhibitors.  相似文献   

19.
The phosphobase methylation pathway catalyzed by the phosphoethanolamine methyltransferase in Plasmodium falciparum (PfPMT), the malaria parasite, offers an attractive target for anti-parasitic drug development. PfPMT methylates phosphoethanolamine (pEA) to phosphocholine for use in membrane biogenesis. Quantum mechanics and molecular mechanics (QM/MM) calculations tested the proposed reaction mechanism for methylation of pEA involving the previously identified Tyr-19–His-132 dyad, which indicated an energetically unfavorable mechanism. Instead, the QM/MM calculations suggested an alternative mechanism involving Asp-128. The reaction coordinate involves the stepwise transfer of a proton to Asp-128 via a bridging water molecule followed by a typical Sn2-type methyl transfer from S-adenosylmethionine to pEA. Functional analysis of the D128A, D128E, D128Q, and D128N PfPMT mutants shows a loss of activity with pEA but not with the final substrate of the methylation pathway. X-ray crystal structures of the PfPMT-D128A mutant in complex with S-adenosylhomocysteine and either pEA or phosphocholine reveal how mutation of Asp-128 disrupts a hydrogen bond network in the active site. The combined QM/MM, biochemical, and structural studies identify a key role for Asp-128 in the initial step of the phosphobase methylation pathway in Plasmodium and provide molecular insight on the evolution of multiple activities in the active site of the PMT.  相似文献   

20.
Malignant mesothelioma (MM) is an aggressive asbestos-related cancer of the serous membranes. Despite intensive treatment regimens, MM is still a fatal disease, mainly due to the intrinsic resistance to current therapies and the lack of predictive markers and new valuable molecular targets. Protein arginine methyltransferase 5 (PRMT5) inhibition has recently emerged as a potential therapy against methylthioadenosine phosphorylase (MTAP)-deficient cancers, in which the accumulation of the substrate 5'-methylthioadenosine (MTA) inhibits PRMT5 activity, thus sensitizing the cells to further PRMT5 inhibition. Considering that the MTAP gene is frequently codeleted with the adjacent cyclin-dependent kinase inhibitor 2A (CDKN2A) locus in MM, we assessed whether PRMT5 could represent a therapeutic target also for this cancer type. We evaluated PRMT5 expression, the MTAP status and MTA content in normal mesothelial and MM cell lines. We found that both administration of exogenous MTA and stable PRMT5 knock-down, by short hairpin RNAs (shRNAs), selectively reduced the growth of MTAP-deleted MM cells. We also observed that PRMT5 knock-down in MTAP-deficient MM cells reduced the expression of E2F1 target genes involved in cell cycle progression and of factors implicated in epithelial-to-mesenchymal transition. Therefore, PRMT5 targeting could represent a promising new therapeutic strategy against MTAP-deleted MMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号