首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Exposing genetically predisposed individuals to certain environmental agents is believed to cause human lupus. How environmental agents interact with the host to cause lupus is poorly understood. Procainamide and hydralazine are drugs that cause lupus in genetically predisposed individuals. Understanding how these environmental agents cause lupus may indicate mechanisms relevant to the idiopathic disease. Abnormal T cell DNA methylation, a repressive epigenetic DNA modification, is implicated in procainamide and hydralazine induced lupus, as well as idiopathic lupus. Procainamide is a competitive DNA methyltransferase (Dnmt) inhibitor, hydralazine inhibits ERK pathway signaling thereby decreasing Dnmt expression, and in lupus T cells decreased ERK pathway signaling causing a similar Dnmt decrease. T cells treated with procainamide, hydralazine, and other Dnmt and ERK pathway inhibitors cause lupus in mice. Whether the same genetic regulatory elements demethylate in T cells treated with Dnmt inhibitors, ERK pathway inhibitors, and in human lupus is unknown. CD70 (TNFSF7) is a B cell costimulatory molecule overexpressed on CD4(+) lupus T cells as well as procainamide and hydralazine treated T cells, and contributes to excessive B cell stimulation in vitro and in lupus. In this report we identify a genetic element that suppresses CD70 expression when methylated, and which demethylates in lupus and in T cells treated with Dnmt and ERK pathway inhibitors including procainamide and hydralazine. The results support a model in which demethylation of specific genetic elements in T cells, caused by decreasing Dnmt expression or inhibiting its function, contributes to drug-induced and idiopathic lupus through altered gene expression.  相似文献   

2.
3.
The epigenetic face of systemic lupus erythematosus   总被引:3,自引:0,他引:3  
Systemic lupus erythematosus (SLE) is an archetypical systemic, autoimmune inflammatory disease characterized by the production of autoantibodies to multiple nuclear Ags. Apoptotic defects and impaired removal of apoptotic cells contribute to an overload of autoantigens that become available to initiate an autoimmune response. Besides the well-recognized genetic susceptibility to SLE, epigenetic factors are important in the onset of the disease, as even monozygotic twins are usually discordant for the disease. Changes in DNA methylation and histone modifications, the major epigenetic marks, are a hallmark in genes that undergo epigenetic deregulation in disease. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur. Moreover, histone deacetylase inhibitors reverse the skewed expression of multiple genes involved in SLE. In the present study, we discuss the implications of epigenetic alterations in the development and progression of SLE and how epigenetic drugs constitute a promising source of therapy to treat this disease.  相似文献   

4.
The regulation of gene expression plays a pivotal role in complex phenotypes, and epigenetic mechanisms such as DNA methylation are essential to this process. The availability of next-generation sequencing technologies allows us to study epigenetic variation at an unprecedented level of resolution. Even so, our understanding of the underlying sources of epigenetic variability remains limited. Twin studies have played an essential role in estimating phenotypic heritability, and these now offer an opportunity to study epigenetic variation as a dynamic quantitative trait. High monozygotic twin discordance rates for common diseases suggest that unexplained environmental or epigenetic factors could be involved. Recent genome-wide epigenetic studies in disease-discordant monozygotic twins emphasize the power of this design to successfully identify epigenetic changes associated with complex traits. We describe how large-scale epigenetic studies of twins can improve our understanding of how genetic, environmental and stochastic factors impact upon epigenetics, and how such studies can provide a comprehensive understanding of how epigenetic variation affects complex traits.  相似文献   

5.
Drug-induced systemic lupus erythematosus arises from toxic side-effects of administration of hydralazine, isoniazid, procainamide and practolol. Hydralazine and isoniazid are nucleophilic drugs and inhibit the covalent binding reaction of complement components, C3 and C4, an effect likely to lead to deposition of immune complexes (a feature of systemic lupus erythematosus). Procainamide and practolol do not themselves inhibit C3 and C4. A range of metabolites and putative metabolites of procainamide and practolol were synthesized, and tested for their ability to inhibit the covalent binding reactions of C3 and C4. The highly nucleophilic hydroxylamine metabolite of procainamide was strongly inhibitory in both tests, as was a putative hydroxylamine metabolite of practolol. These studies indicate a potential role for the hydroxylamine metabolites in mediating the toxic side-effects of procainamide and practolol, and emphasize the need for adequate measurements of hydroxylamine metabolites in human tissue.  相似文献   

6.
HDAC inhibition in lupus models   总被引:1,自引:0,他引:1  
Systemic lupus erythematosus (SLE) is a prototypic autoimmune inflammatory disease characterized by the production of autoantibodies directed against nuclear antigens such as nucleosomes, DNA and histone proteins found within the body's cells and plasma. Autoantibodies may induce disease by forming immune complexes that lodge in target organs or by crossreacting with targeted antigens and damaging tissue. In addition to autoantibody production, apoptotic defects and impaired removal of apoptotic cells contribute to an overload of autoantigens that initiate an autoimmune response. Besides the well-recognized genetic susceptibility to SLE, environmental and epigenetic factors play a crucial role in disease pathogenesis as evidenced by monozygotic twins typically being discordant for disease. Changes in DNA methylation and histone acetylation alter gene expression and are thought to contribute to the epigenetic deregulation in disease. In SLE, global and gene-specific DNA methylation changes have been demonstrated to occur. Additionally, aberrant histone acetylation is evident in individuals with SLE. Moreover, histone deacetylase inhibitors (HDACi) have been shown to reverse the skewed expression of multiple genes involved in SLE. In this review, we discuss the implications of epigenetic alterations in the development and progression of SLE, and how therapeutics designed to alter histone acetylation status may constitute a promising avenue to target disease.  相似文献   

7.
Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%-80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4(+) and CD8(+) cells using Illumina's HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4(+) cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease.  相似文献   

8.
The etiology of complex diseases is characterized by the interaction between the genome and environmental conditions and the interface of epigenetics may be a central mechanism. Current technologies already allow us high-throughput profiling of epigenetic patterns at genome level. However, our understanding of the epigenetic processes remains limited. Twins are special samples in genetic studies due to their genetic similarity and rearing-environment sharing. In the past decades, twins have made a great contribution in dissecting the genetic and environmental contributions to human diseases and complex traits. In the era of functional genomics, the valuable samples of twins are helping to bridge the gap between gene activity and environmental conditions through epigenetic mechanisms unlimited to DNA sequence variations. We review the recent progresses in using twins to study disease-related molecular epigenetic phenotypes and link them with environmental exposures especially early life events. Various study designs and application issues will be highlighted and discussed with aim at making uses of twins in assessing the environmental impact on epigenetic changes during the development of complex diseases.  相似文献   

9.
X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation, is caused by defects in the ATP Binding Cassette Subfamily D Member 1 (ABCD1) gene. X-ALD patients may be asymptomatic or present with several clinical phenotypes varying from severe to mild, severe cerebral adrenoleuko-dystrophy to mild adrenomyeloneuropathy (AMN). Although most female heterozygotes present with AMN-like symptoms after 60 years of age, occasional cases of females with the cerebral form have been reported. Phenotypic variability has been described within the same kindreds and even among monozygotic twins. There is no association between the nature of ABCD1 mutation and the clinical phenotypes, and the molecular basis of phenotypic variability in X-ALD is yet to be resolved. Various genetic, epigenetic, and environmental influences are speculated to modify the disease onset and severity. In this review, we summarize the observations made in various studies investigating the potential modifying factors regulating the clinical manifestation of X-ALD, which could help understand the pathogenesis of the disease and develop suitable therapeutic strategies.  相似文献   

10.
Twins. Novel uses to study complex traits and genetic diseases   总被引:9,自引:0,他引:9  
The challenge faced by research into the genetic basis of complex disease is to identify genes of small relative effect against a background of substantial genetic and environmental variation. This has focused interest on a classical epidemiological design: the study of twins. Through their precise matching for age, the common family environment and background environmental variation, studying diseases in non-identical twins provides a means to enhance the power of conventional strategies to detect genetic influence through linkage and association. The unique matching of identical twins provides researchers with ways to isolate the function of individual genes involved in disease together with approaches to understanding how genes and the environment interact.  相似文献   

11.
Recent studies have identified both heritable DNA methylation effects and differential methylation in disease-discordant identical twins. Larger sample sizes, replication, genetic-epigenetic analyses and longitudinal assays are now needed to establish the role of epigenetic variants in disease.  相似文献   

12.
There are numerous diseases associated with abnormal hormonal regulation and these include cancers of the breast and prostate. There is substantial evidence that early hormonal perturbations (in utero or during early development) are associated with increased disease susceptibility later in life. These perturbations may arise from exposure to environmental agents or endocrine disruptors which mimic hormones and disrupt normal hormonal signaling. Epigenetic alterations have often been proposed as the underlying mechanism by which early hormonal perturbations may give rise to disease in adulthood. Currently, there is minimal evidence to support a direct link between early hormonal perturbations and epigenetic modifications; or between epigenetic alterations and subsequent onset of cancer. Given that epigenetic modifications may play an important role in hormone-dependent cancers, it is essential to better understand the relationship between the hormonal environment and epigenetic modifications in both normal and disease states. In this review, we highlight several important studies which support the hypothesis that: hormonal perturbations early in life may result in epigenetic changes that may modify hormone receptor function, thereby contributing to an increased risk of developing hormone-related cancers.  相似文献   

13.
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.  相似文献   

14.
Monozygotic twins are considered to be genetically identical, yet can show high discordance in their phenotypes and disease susceptibility. Several studies have emphasized the influence of external factors and the role of epigenetic polymorphism in conferring this variability. However, some recent high-resolution studies on DNA methylation show contradicting evidence, which poses questions on the extent of epigenetic variability between twins. The advent of next-generation sequencing technologies now allow us to interrogate multiple epigenomes on a massive scale and understand the role of epigenetic modification, especially DNA methylation, in regulating complex traits. This article briefly discusses the recent key findings, unsolved questions in the area, and speculates on the future directions in the field.  相似文献   

15.
Non-bilayer phospholipid arrangements are three-dimensional structures that can form when anionic phospholipids with an intermediate form of the tubular hexagonal phase II (H(II)), such as phosphatidic acid, phosphatidylserine or cardiolipin, are present in a bilayer of lipids. The drugs chlorpromazine and procainamide, which trigger a lupus-like disease in humans, can induce the formation of non-bilayer phospholipid arrangements, and we have previously shown that liposomes with non-bilayer arrangements induced by these drugs cause an autoimmune disease resembling human lupus in mice. Here we show that liposomes with non-bilayer phospholipid arrangements induced by Mn2? cause a similar disease in mice. We extensively characterize the physical properties and immunological reactivity of liposomes made of the zwitterionic lipid phosphatidylcholine and a H(II)-preferring lipid, in the absence or presence of Mn2?, chlorpromazine or procainamide. We use an hapten inhibition assay to define the epitope recognized by sera of mice with the disease, and by a monoclonal antibody that binds specifically to non-bilayer phospholipid arrangements, and we report that phosphorylcholine and glycerolphosphorylcholine, which form part of the polar region of phosphatidylcholine, are the only haptens that block the binding of the tested antibodies to non-bilayer arrangements. We propose a model in which the negatively charged H(II)-preferring lipids form an inverted micelle by electrostatic interactions with the positive charge of Mn2?, chlorpromazine or procainamide; the inverted micelle is inserted into the bilayer of phosphatidylcholine, whose polar regions are exposed and become targets for antibody production. This model may be relevant in the pathogenesis of human lupus.  相似文献   

16.
Antinuclear antibodies (ANA) development was studied in male guinea pigs in response to chronic treatment with procainamide, hydralazine, acetanilide or caffeine. Acetanilide and caffeine have not previously been associated with ANA induction. Fifty-one weanling Hartley guinea pigs were divided into five groups which received either procainamide, hydralazine, acetanilide, caffeine or saline sc for 55 weeks; drug dosage was 10 mg/kg initially and was increased incrementally to 40 mg/kg by 10 months except for hydralazine, which was increased to 20 mg/kg. Two weeks before initiation of treatment, 1 mg of the appropriate drug in 0.4 ml of buffered Freund's complete adjuvant (FCA-PBS) was administered intradermally. Controls received FCA-PBS only. Sera ANA were assayed at 6, 10 and 13 months. After 13 months of treatment, those sera which were ANA positive were assayed for anti-deoxyribunucleoprotein antibodies and were titered for ANA. Chi-square analyses were performed on results of the 10- and 13-month ANA screening results. ANA induction was significant at P = 0.05 only for the group receiving procainamide at both 10 and 13 months of treatment. When the cumulative results of all ANA screens were analyzed, ANA induction was significant for procainamide, acetanilide and caffeine. The test system did not prove to be promising for unambiguous identification of drugs with ANA-inducing potential, but may be useful for studies of mechanisms of ANA induction by chemicals.  相似文献   

17.
X-chromosome inactivation (XCI) is a pivotal epigenetic mechanism involved in the dosage compensation of X-linked genes between males and females. In any given cell, the process of XCI in early female development is thought to be random across alleles and clonally maintained once established. Recent studies, however, suggest that XCI might not always be random and that skewed inactivation may become more prevalent with age. The factors influencing such XCI skewing and its changes over time are largely unknown. To elucidate the influence of stochastic, heritable and environmental factors in longitudinal changes in XCI, we examined X inactivation profiles in a sample of monozygotic (MZ) (n = 23) and dizygotic (DZ) (n = 22) female twin-pairs at ages 5 and 10 years. Compared to MZ twins who were highly concordant for allelic XCI ratios, DZ twins showed much lower levels of concordance. Whilst XCI patterns were moderately stable between ages 5 and 10 years, there was some drift over time with an increased prevalence of more extreme XCI skewing at age 10. To our knowledge, this study represents the earliest longitudinal assessment of skewed XCI patterns, and suggests that skewed XCI may already be established in early childhood. Our data also suggest a link between MZ twinning and the establishment of allelic XCI ratios, and demonstrate that acquired skewing in XCI after establishment is primarily mediated by stochastic mechanisms. These data have implications for our understanding about sex differences in complex disease, and the potential causes of phenotypic discordance between MZ female twins.  相似文献   

18.
The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution.  相似文献   

19.
We have identified regions within core histones that are antigenic for autoantibodies in systemic lupus erythematosus (SLE) and drug-induced lupus. An immunoblotting technique was used to determine the reactivity of lupus antibodies for intact histones and for trypsin-resistant histone fragments that lack the amino- and carboxyl-terminal amino acids that are normally exposed in native nucleosomes. In SLE, the predominant anti-histone response was restricted to epitopes in the trypsin-sensitive regions. Of 20 SLE sera that had strong antibody activity for multiple intact histones, 17 showed minimal activity with any of the corresponding trypsin-resistant fragments. A markedly different pattern of reactivity was present in sera of patients with procainamide (Pr)-induced lupus in which antibodies to H2A, H2B, and the H2A-H2B complex had strong fragment activity. Interestingly, recognition of trypsin-resistant fragments was also noted in a small number of SLE sera that contained antibodies to the H2A-H2B complex. In contrast to both SLE and Pr-induced lupus, antibodies induced by hydralazine (Hy) reacted primarily with H3 and H4. Furthermore, these antibodies bound equally well to the corresponding trypsin-resistant regions that are thought to be relatively unexposed in native nucleosomes. Thus, the specificities of anti-histone antibodies in SLE, Pr-induced lupus, and Hy-induced lupus are markedly different, but in each disease reactivity appears to be restricted to a limited number of histone determinants. The data raise the possibility that autoantigen in the form of native nucleosomes may be recognized in SLE and possibly in Pr-induced lupus. In contrast, the propensity of Hy to induce autoantibodies to determinants usually not recognized in SLE or Pr-induced lupus may suggest a different immunogenic stimulus in this disease.  相似文献   

20.
Atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Our aim was to review recent studies that address the increased risk of atherosclerosis and coronary heart disease in patients with rheumatoid arthritis and systemic lupus erythematosus. We examine the strength of this association, how inflammation mediates this increased risk and what impact therapies may have. RECENT FINDINGS: Atherosclerosis is more prevalent and accelerated in both conditions. Indeed the process may actually precede the onset of clinical inflammatory disease. Metabolic alterations include insulin resistance and the generation of proinflammatory HDL. In addition, inflammatory mechanisms central to both rheumatoid arthritis and systemic lupus erythematosus such as macrophage activation, interferon-1 and complement deficiency may contribute to atherogenesis. There is still no consensus as to the value of primary preventive strategies in these conditions. However, drugs such as hydroxychloroquine seem to modify coronary heart disease risk and may improve survival. The recently developed antitumour necrosis factor drugs may also reduce coronary heart disease risk but biomarker studies to date have been inconclusive. SUMMARY: There is an urgent need for clinical trials to examine both the lipid-lowering and inflammatory hypotheses of atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Novel targeted therapies in development may also have a major impact on future coronary heart disease risk in these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号