首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The purpose of the present study was to evaluate whether endostatin overexpression could improve cardiac function, hemodynamics, and fibrosis in heart failure (HF) via inhibiting reactive oxygen species (ROS). The HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending (LAD) artery in Sprague–Dawley (SD) rats. Endostatin level in serum was increased in MI rats. The decrease in cardiac function and hemodynamics in MI rats were enhanced by endostatin overexpression. Endostatin overexpression inhibited the increase in collagen I, collagen III, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2 and MMP9 in the hearts of MI rats. MI-induced cardiac hypertrophy was reduced by endostatin overexpression. The increased levels of malondialdehyde (MDA), superoxide anions, the promoted NAD(P)H oxidase (Nox) activity, and the reduced superoxide dismutase (SOD) activity in MI rats were reversed by endostatin overexpression. Nox4 overexpression inhibited the cardiac protective effects of endostatin. These results demonstrated that endostatin improved cardiac dysfunction and hemodynamics, and attenuated cardiac fibrosis and hypertrophy via inhibiting oxidative stress in MI-induced HF rats.  相似文献   

2.
de Resende MM  Kauser K  Mill JG 《Life sciences》2006,78(26):3066-3073
Myocardial infarction (MI) activates the renin-angiotensin system in the heart and increases local production of aldosterone. This hormone may increase reactive fibrosis in the myocardium favoring heart failure development. To elucidate the potential contribution of aldosterone to cardiac remodeling following MI, we evaluated the expression of mineralocorticoid receptors (MCR) in the left ventricle (LV) and kidney of rats after MI and captopril treatment. MI was induced by ligation of the coronary artery in Wistar rats, which were separated into (1) sham-operated group, (2) MI group, (3) MI-captopril treated group (cap, 50 mg kg(-1) day(-1)). One month later angiotensin converting enzyme (ACE) activity was assayed in the plasma, LV and kidney. Cardiac and renal angiotensin II (Ang II) levels were determined by ELISA and MCR mRNA expression and protein were measured by Taqman RT-PCR and Western blot, respectively. Cardiac MCR mRNA and protein levels increased nearly by 80% after MI and Cap treatment normalized cardiac MCR protein and mRNA expression. Kidney MCR expression was not affected. ACE activity increased 34% in the plasma and 83% in the LV after MI. This increase was prevented by Cap. Ang II concentration increased 225% in the LV and 193% in kidney, which was partially attenuated by Cap. Our data demonstrate upregulation of MCR in the heart following MI what may facilitate the effects of aldosterone in the ventricular remodeling process. ACE inhibitors may reduce reactive fibrosis not only by decreasing Ang II production but also by attenuating the aldosterone-signaling pathway by decreasing the expression of MCR receptors.  相似文献   

3.
Tongguan capsule is a compound Chinese medicine used to treat ischaemic heart diseases. This study aimed to investigate whether Tongguan capsule‐derived herb (TGD) has a preventive effect on atrial fibrillation (AF) in post‐myocardial infarction (MI) rats and to determine the underlying mechanisms. MI was induced by ligation of the left anterior descending coronary artery. TGD was administered to the post‐MI rats over a 4‐week period. The TGD‐treated rats had lower rates of AF inducibility and shorter AF durations than the MI rats. TGD improved the left atrial (LA) conduction velocity and homogeneity. It reduced the fibrosis‐positive areas and the protein levels of collagen types I and III in the left atrium. In vitro, it inhibited the expression of collagen types I and III by inhibiting the proliferation, migration, differentiation and cytokine secretion of cardiac fibroblasts (CFs). In conclusion, the current study demonstrated that TGD reduces susceptibility to AF and improves LA conduction function in rats with post‐MI by inhibiting left atrial fibrosis and modulating CFs. Targeting the CF population may be a novel antiarrhythmic therapeutic approach.  相似文献   

4.
Smith RS  Agata J  Xia CF  Chao L  Chao J 《Life sciences》2005,76(21):2457-2471
Nitric oxide (NO) has been shown to play a key role in the regulation of cardiac hypertrophy and fibrosis in response to myocardial ischemia in part by antagonizing the action of angiotensin II (Ang II). In this study, we investigated the potential protective role of human endothelial nitric oxide synthase (eNOS) in left ventricular (LV) remodeling after myocardial infarction (MI) by a somatic gene transfer approach. Male Wistar rats underwent coronary artery ligation to induce MI. One week after surgery, adenovirus encoding the human eNOS or luciferase gene under the control of the CMV promoter/enhancer was injected into rats via the tail vein, and animals were sacrificed at 1 and 5 weeks after gene transfer. Successful gene transfer was evaluated based on increased levels of NO and cGMP in the heart, measured at one week after eNOS gene delivery. Six weeks after MI, the LV end-diastolic pressure, heart weight, LV axis length and cardiomyocyte size were markedly increased compared to the Sham group, while eNOS gene delivery significantly reduced these parameters. Rats receiving control virus developed considerably more fibrotic lesions identified by Sirius Red staining and collagen I immunostaining compared to Sham rats, and eNOS gene delivery significantly reduced collagen accumulation. eNOS gene transfer also reduced TUNEL-positive apoptotic cells. The cardioprotective effect of NO was accompanied by reduced NADH and NADPH oxidase activities and superoxide formation, TGF-beta1 and p27 levels, JNK activation, NF-kappa B nuclear translocation, and caspase-3 activity. This study shows that NO may play an important role in attenuating cardiac remodeling and apoptosis after myocardial infarction via suppression of oxidative stress-mediated signaling pathways.  相似文献   

5.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

6.
Myocardial infarction (MI) is a severe coronary artery disease resulted from substantial and sustained ischemia. Abnormal upregulation of calcium and integrin binding protein 1 (CIB1) has been found in several cardiovascular diseases. In this study, we established a mouse model of MI by permanent ligation of the left anterior descending coronary artery. CIB1 was upregulated in the heart of MI mice. Notably, CIB1 knockdown by intramuscular injection of lentivirus-mediated short hairpin RNA (shRNA) targeting Cib1 improved cardiac function and attenuated myocardial hypertrophy and infarct area in MI mice. MI-induced upregulation of α-SMA, vimentin, Collagen I, and Collagen III, which resulted in collagen production and myocardial fibrosis, were regressed by CIB1 silencing. In vitro, cardiac fibroblasts (CFs) isolated from mice were subjected to angiotensin II (Ang II) treatment. Inhibition of CIB1 downregulated the expression of α-SMA, vimentin, Collagen I, and Collagen III in Ang II-treated CFs. Moreover, CIB1 knockdown inhibited Ang II-induced phosphorylation of PI3K-p85 and Akt in CFs. The effect of CIB1 knockdown on Ang II-induced cellular injury was comparable to that of LY294002, a specific inhibitor of the PI3K/Akt pathway. We demonstrated that MI-induced cardiac hypertrophy, myocardial fibrosis, and cardiac dysfunction might be attributed to the upregulation of CIB1 in MI mice. Downregulation of CIB1 alleviated myocardial fibrosis and cardiac dysfunction by decreasing the expression of α-SMA, vimentin, Collagen I, and Collagen III via inhibiting the PI3K/Akt pathway. Therefore, CIB1 may be a potential target for MI treatment.  相似文献   

7.
8.
Epigallocatechin‐3‐O‐gallate (EGCG), derived from green tea, has been studied extensively because of its diverse physiological and pharmacological properties. This study evaluates the protective effect of EGCG on angiotensin II (Ang II)‐induced endoglin expression in vitro and in vivo. Cardiac fibroblasts (CFs) from the thoracic aorta of adult Wistar rats were cultured and induced with Ang II. Western blotting, Northern blotting, real‐time PCR and promoter activity assay were performed. Ang II increased endoglin expression significantly as compared with control cells. The specific extracellular signal‐regulated kinase inhibitor SP600125 (JNK inhibitor), EGCG (100 μM) and c‐Jun N‐terminal kinase (JNK) siRNA attenuated endoglin proteins following Ang II induction. In addition, pre‐treated Ang II‐induced endoglin with EGCG diminished the binding activity of AP‐1 by electrophoretic mobility shift assay. Moreover, the luciferase assay results revealed that EGCG suppressed the endoglin promoter activity in Ang II‐induced CFs by AP‐1 binding. Finally, EGCG and the JNK inhibitor (SP600125) were found to have attenuated endoglin expression significantly in Ang II‐induced CFs, as determined through confocal microscopy. Following in vivo acute myocardial infarction (AMI)‐related myocardial fibrosis study, as well as immunohistochemical and confocal analyses, after treatment with endoglin siRNA and EGCG (50 mg/kg), the area of myocardial fibrosis reduced by 53.4% and 64.5% and attenuated the left ventricular end‐diastolic and systolic dimensions, and friction shortening in hemodynamic monitor. In conclusion, epigallocatechin‐3‐O‐gallate (EGCG) attenuated the endoglin expression and myocardial fibrosis by anti‐inflammatory effect in vitro and in vivo, the novel suppressive effect was mediated through JNK/AP‐1 pathway.  相似文献   

9.
Heart failure (HF) following myocardial infarction (MI) is characterized by progressive alterations of left ventricular (LV) structure and function, named LV remodelling. Although several risk factors such as infarct size have been identified, HF remains difficult to predict in clinical practice. Recently, using phosphoproteomic technology, we found that serine208‐phosphorylated troponin T (P‐Ser208‐TnT) decreases in LV of HF rats. Our aim was to determine the performance of P‐Ser208‐TnT as plasma biomarker of HF compared to conventional cardiac biomarkers such as B‐type natriuretic peptide (BNP), cardiac troponin I (cTnI), C‐reactive protein (CRP) or tissue inhibitor of metalloproteinase I (TIMP‐1) measured by x‐MAP technology, as well as its capacity to reflect a pharmacological improvement of HF. We observed a significant increase of BNP, TnT and cTnI levels and a significant decrease of P‐Ser208‐TnT and TIMP‐1 in the plasma of 2‐month‐MI rats compared with control rats with no modulation of CRP level. Circulating levels of P‐Ser208‐TnT were shown to be associated with most of the echocardiographic and haemodynamic parameters of cardiac function. We verified that the decrease of P‐Ser208‐TnT was not because of an excess of phosphatase activity in plasma of HF rats. Two‐month‐MI rats treated with the heart rate reducing agent ivabradine had improved LV function and increased plasma levels of P‐Ser208‐TnT. Thus, circulating phosphorylated troponin T is a highly sensitive biological indicator of cardiac dysfunction and has the potentiality of a new biomarker of HF post‐MI, and of a surrogate marker for the efficacy of a successful treatment of HF.  相似文献   

10.
Cardiac fibroblast (CF) proliferation and differentiation into hypersecretory myofibroblasts can lead to excessive extracellular matrix (ECM) production and cardiac fibrosis. In turn, the ECM produced can potentially activate CFs via distinct feedback mechanisms. To assess how specific ECM components influence CF activation, isolated CFs were plated on specific collagen substrates (type I, III, and VI collagens) before functional assays were carried out. The type VI collagen substrate potently induced myofibroblast differentiation but had little effect on CF proliferation. Conversely, the type I and III collagen substrates did not affect differentiation but caused significant induction of proliferation (type I, 240.7 +/- 10.3%, and type III, 271.7 +/- 21.8% of basal). Type I collagen activated ERK1/2, whereas type III collagen did not. Treatment of CFs with angiotensin II, a potent mitogen of CFs, enhanced the growth observed on types I and III collagen but not on the type VI collagen substrate. Using an in vivo model of myocardial infarction (MI), we measured changes in type VI collagen expression and myofibroblast differentiation after post-MI remodeling. Concurrent elevations in type VI collagen and myofibroblast content were evident in the infarcted myocardium 20-wk post-MI. Overall, types I and III collagen stimulate CF proliferation, whereas type VI collagen plays a potentially novel role in cardiac remodeling through facilitation of myofibroblast differentiation.  相似文献   

11.
Hearts of normotensive angiotensin II type 2 receptor (AT2)-deficient mice do not develop fibrosis after angiotensin II-induced chronic hypertension. Thus, the goal of our study was to clarify whether AT2 knockouts (KOs) are also characterized by altered left ventricular (LV) function and modified remodeling of the extracellular matrix (ECM) after induction of myocardial infarction (MI). MI was induced in 5-mo-old female AT2-deficient mice and controls by occlusion of the left coronary artery. Time-matched sham-operated animals served as controls. After 48 h, the first sets of mice were hemodynamically characterized using a pressure-tip catheter (n=8/group). We also obtained pressure volume loops using a microconductance catheter in additional sets of animals 3 wk after induction of MI (n=7/group). Finally, the collagen index was illustrated by Sirius red staining and quantified by digital analysis. Whereas the LV function of sham-operated animals did not differ between both genotypes, the collagen index was 44% lower in KO animals. Forty-eight hours and 3 wk post-MI, systolic and diastolic LV function were impaired in both AT2-deficient and wild-type (WT) animals to the same extent by approx 45%. No differences were found between the two genotypes with respect to LV hypertrophy and the fibrosis index in the infarcted and noninfarcted areas 3 wk post-MI. While AT2-KO mice had less cardiac collagen content under basal conditions, the receptor deficiency had no significant influence on LV function at the two investigated time points after induction of MI or on the remodeling of ECM at the latter time point. Thus, hypetension-induced fibrosis is probably triggered by other control mechanisms than fibrosis induced by MI.  相似文献   

12.
Cardiac fibrosis is a major cause of heart failure. MicroRNAs (miRs) are important epigenetic regulators of cardiac function and cardiovascular diseases, including cardiac fibrosis. This study aimed to explore the role of miR‐503 and its mechanisms in regulating cardiac fibrosis. miR‐503 was found up‐regulated in the mouse LV tissues subjected to transverse aortic constriction (TAC) and in neonatal cardiac fibroblasts (CFs) cultured with Angiotension II. The role of miR‐503 in regulating CF cell proliferation and/or collagen production in mice neonatal CFs were determined using an MTT assay and RT‐PCR respectively. Forced expression of miR‐503 increased the cellular proliferation and collagen production in mice neonatal CFs. The effects were abrogated by cotransfection with AMO‐503 (a specific inhibitor of miR‐503). Injection of antagomiR‐503 elevated cardiac function and inhibited the expression of connective tissue growth factor (CTGF) and transforming growth factor (TGF)‐β in the TAC mice. Additional analysis revealed that Apelin‐13 is a direct target of miR‐503, as the overexpression of miR‐503 decreased the protein and mRNA expression levels of Apelin‐13. In the CFs with pre‐treatment of AngII, we transfected AMO‐503 into the cells treated with siRNA‐APLN. siRNA‐APLN abolished the effects of AMO‐503 on the production of collagen I and III and the expression of TGF‐β and CTGF. Furthermore, pre‐treatment of CFs with Apelin‐13 (1–100 nmol/l) inhibited angiotensin II‐mediated collagen production and activation of CTGF and TGF‐β. So we conclude that miR‐503 promotes cardiac fibrosis via miR‐503‐Apelin‐13‐TGF‐β‐CTGF‐collagen production pathway. Thus, miR‐503 is a promising therapeutic target for reducing cardiac fibrosis.  相似文献   

13.
A recent study suggests that exogenous ghrelin administration might decrease renal sympathetic nerve activity in conscious rabbits. In the present study, we investigated whether ghrelin administration would attenuate left ventricular (LV) remodeling following myocardial infarction (MI) via the suppression of cardiac sympathetic activity. Ghrelin (100 microg/kg sc, twice daily, n = 15) or saline (n = 15) were administered for 2 wk from the day after MI operation in Sprague-Dawley rats. The effects of ghrelin on cardiac remodeling were evaluated by echocardiographic, hemodynamic, histopathological, and gene analysis. In addition, before and after ghrelin (100 microg/kg sc, n = 6) was administered in conscious rats with MI, the autonomic nervous function was investigated by power spectral analysis obtained by a telemetry system. In ghrelin-treated rats, LV enlargement induced by MI was significantly attenuated compared with saline-treated rats. In addition, there was a substantial decrease in LV end-diastolic pressure and increases in the peak rate of the rise and fall of LV pressure in ghrelin-treated MI rats compared with saline-treated MI rats. Furthermore, ghrelin attenuated an increase in morphometrical collagen volume fraction in the noninfarct region, which was accompanied by the suppression of collagen I and III mRNA levels. Importantly, a 2-wk administration of ghrelin dramatically suppressed the MI-induced increase in heart rate and plasma norepinephrine concentration to the similar levels as in sham-operated controls. Moreover, acute administration of ghrelin to MI rats decreased the ratio of the low-to-high frequency spectra of heart rate variability (P < 0.01). In conclusion, these data suggest the potential usefulness of ghrelin as a new cardioprotective hormone early after MI.  相似文献   

14.
Danqi soft capsule (DQ) is a traditional Chinese medicine containing Salvia miltiorrhiza and Panax notoginseng; it is safe and efficient in treating ischaemic heart diseases. The purpose of the present study was to assess whether DQ could prevent infarct border zone (IBZ) remodelling and decrease ventricular arrhythmias occurrence in post‐myocardial infarction (MI) stage. MI was induced by a ligation of the left anterior descending coronary artery. DQ was administered to the post‐MI rats started from 1 week after MI surgery for 4 weeks. The results showed that DQ treatment significantly attenuated tachyarrhythmia induction rates and arrhythmia score in post‐MI rats. In echocardiography, DQ improved left ventricular (LV) systolic and diastolic function. Histological assessment revealed that DQ significantly reduced fibrotic areas and myocyte areas, and increased connexin (Cx) 43 positive areas in IBZ. Western blot revealed that DQ treatment significantly reduced the protein expression levels of type I and III collagens, α‐smooth muscle actin (α‐SMA), transforming growth factor‐β1 (TGF‐β1) and Smad3 phosphorylation, while increasing Cx43 amounts. Overall, these findings mainly indicated that DQ intervention regulates interstitial fibrosis, Cx43 expression and myocyte hypertrophy by TGF‐β1/Smad3 pathway in IBZ, inhibits LV remodelling and reduces vulnerability to tachyarrhythmias after MI. This study presents a proof of concept for novel antiarrhythmic strategies in preventing IBZ remodelling, modifying the healed arrhythmogenic substrate and thus reducing susceptibility to ventricular arrhythmias in the late post‐MI period.  相似文献   

15.
Current rodent models of ischemia/infarct or pressure-volume overload are not fully representative of human heart failure. We developed a new model of congestive heart failure (CHF) with both ischemic and stress injuries combined with fibrosis in the remote myocardium. Sprague-Dawley male rats were used. Ascending aortic banding (Ab) was performed to induce hypertrophy. Two months post-Ab, ischemia-reperfusion (I/R) injury was induced by ligating the left anterior descending (LAD) artery for 30 min. Permanent LAD ligation served as positive controls. A debanding (DeAb) procedure was performed after Ab or Ab + I/R to restore left ventricular (LV) loading properties. Cardiac function was assessed by echocardiography and in vivo hemodynamic analysis. Myocardial infarction (MI) size and myocardial fibrosis were assessed. LV hypertrophy was observed 4 mo post-Ab; however, systolic function was preserved. LV hypertrophy regressed within 1 mo after DeAb. I/R for 2 mo induced a small to moderate MI with mild impairment of LV function. Permanent LAD ligation for 2 mo induced large MI and significant cardiac dysfunction. Ab for 2 mo followed by I/R for 2 mo (Ab + I/R) resulted in moderate MI with significantly reduced ejection fraction (EF). DeAb post Ab + I/R to reduce afterload could not restore cardiac function. Perivascular fibrosis in remote myocardium after Ab + I/R + DeAb was associated with decreased cardiac function. We conclude that Ab plus I/R injury with aortic DeAb represents a novel model of CHF with increased fibrosis in remote myocardium. This model will allow the investigation of vascular and fibrotic mechanisms in CHF characterized by low EF, dilated LV, moderate infarction, near-normal aortic diameter, and reperfused coronary arteries.  相似文献   

16.
The dysregulation of Long noncoding RNAs (lncRNAs) has been implicated in many cardiovascular diseases, including cardiac fibrosis. However, the functions and mechanisms of lncRNAs in cardiac fibroblasts (CFs) have not been fully elucidated. First, we observed a correlation between cardiac remodeling (CR) and lncRNA FAF (FGF9-associated factor, termed FAF) expression in the heart. In vitro, we found that the expression of lncRNA FAF was altered in CFs, whereas it behaved inconsistently in cardiomyocytes (CMs). Next, we investigated the effects of lncRNA FAF on angiotensinogen II (Ang II)-induced cardiac fibrosis in neonatal rat CFs and explored the mechanism underlying these effects. In this study, lncRNA FAF was enriched in CFs and was associated with cardiac fibrosis. Upregulation of lncRNA FAF significantly restrained Ang II-induced increases in cell proliferation, differentiation and collagen accumulation of CFs. Moreover, we found that the function of lncRNA FAF was mainly realized through Transforming growth factor β1 (TGFβ1) secretion and then downregulated phosphorylation of Smad2/3. Additional analysis revealed that Fibroblast growth factor 9 (FGF9) is a direct target of lncRNA FAF, as the overexpression of lncRNA FAF could increase the expression of FGF9 and knockdown of the FGF9 expression could attenuate the down-regulation of lncRNA FAF on TGFβ1-P-Smad2/3 pathway. Furthermore, knockdown of the FGF9 expression also abolished the inhibitory effect of FAF on fibrosis. In summary, we demonstrated that the overexpression of lncRNA FAF could inhibit fibrosis induced by Ang II via the TGFβ1-P-Smad2/3 signalling by targeting FGF9 in CFs.  相似文献   

17.
18.
In humans, the effect of angiotensin-converting enzyme (ACE) gene polymorphisms in cardiovascular disease is still controversial. In the rat, a microsatellite marker in the ACE gene allows differentiation of the ACE gene polymorphism among strains with different ACE levels. We tested the hypothesis that this ACE gene polymorphism determines the extent of cardiac fibrosis induced by isoproterenol (Iso) in the rat. We used a male F(2) generation (homozygous LL and BB ACE genotypes determined by polymerase chain reaction) derived from two rat strains [Brown-Norway (BB) and Lewis (LL)] that differ with respect to their plasma ACE activities. For induction of left ventricular (LV) hypertrophy (LVH) and cardiac fibrosis, rats were infused with Iso (5 mg x kg(-1) x day(-1)) or saline (control) for 10 days and euthanized at day 1 after the last injection. The interstitial collagen volumetric fraction (ICVF), collagen I, and fibronectin content, but not collagen III content, were significantly higher in the homozygous BB rats than in homozygous LL rats. Differences in metalloprotease (MMP)-9, but not in MMP-2 activities as well as in cardiac cell proliferation, were also detected between LL and BB rats treated with Iso. LV ACE activity was higher in BB rats than LL rats and correlated with ICVF (r = 0.61, P < 0.002). No changes were observed in plasma ACE activities, ANG II plasma or LV levels, plasma renin activity, and ACE and ANG II type 1 receptor (AT1R) mRNA levels in the LV of rats with the two different ACE polymorphisms. Iso induced a similar degree of LVH [assessed by an increase in LV weight 100 per body weight, LV-to-right ventricle (RV) ratio, and LV protein content] in LL and BB rats. We concluded that rats in the F(2) generation with high plasma ACE activity developed more fibrosis but to a similar degree of LVH compared with rats with low plasma ACE activity.  相似文献   

19.
Myocardial fibrosis after myocardial infarction (MI) is a leading cause of heart diseases. MI activates cardiac fibroblasts (CFs) and promotes CF to myofibroblast transformation (CMT). This study aimed to investigate the role of miR‐21 in the regulation of CMT and myocardial fibrosis. Primary rat CFs were isolated from young SD rats and treated with TGF‐β1, miR‐21 sponge or Jagged1 siRNA. Cell proliferation, invasion and adhesion were detected. MI model was established in male SD rats using LAD ligation method and infected with recombinant adenovirus. The heart function and morphology was evaluated by ultrasonic and histological analysis. We found that TGF‐β1 induced the up‐regulation of miR‐21 and down‐regulation of Jagged1 in rat CFs. Luciferase assay showed that miR‐21 targeted 3′‐UTR of Jagged1 in rat CFs. miR‐21 sponge inhibited the transformation of rat CFs into myofibroblasts, and abolished the inhibition of Jagged1 mRNA and protein expression by TGF‐β1. Furthermore, these effects of miR‐21 sponge on rat CFS were reversed by siRNA mediated knockdown of Jagged1. In vivo, heart dysfunction and myocardial fibrosis in MI model rats were partly improved by miR‐21 sponge but were aggravated by Jagged1 knockdown. Taken together, these results suggest that miR‐21 promotes cardiac fibroblast‐to‐myofibroblast transformation and myocardial fibrosis by targeting Jagged1. miR‐21 and Jagged1 are potential therapeutic targets for myocardial fibrosis.  相似文献   

20.
A previous report from this laboratory demonstrated that the ATP-sensitive P2X receptor-mediated muscle pressor reflex was augmented in rats with heart failure (HF). The purpose of this study was to better understand the underlying mechanisms for this greater response in HF rats. We examined 1) responsiveness of the P2X receptor to alpha,beta-methylene ATP (alpha,beta-me-ATP), a P2X receptor agonist, in control and HF rats induced by myocardial infarction (MI); 2) the relationship between P2X-induced blood pressure response and left ventricular (LV) function; and 3) the expression of P2X receptors in the dorsal root ganglion (DRG) of control rats and rats with HF. Eight to 14 wk after coronary artery ligation, the severity of the MI was determined by echocardiography. In the first group of the experiment, alpha,beta-me-ATP (0.0625, 0.125, 0.25, and 0.5 mM) was injected into the arterial blood supply of the hindlimb muscles to evoke a pressor response in 17 decerebrated rats (6 controls, 6 small MIs with infarcts of the LV between 10 and 35%, and 5 large MIs with infarcts >35%). The P2X agonist increased blood pressure, and the effect was significantly accentuated in large MI rats compared with small MI rats and control rats. A significant correlation was observed between alpha,beta-me-ATP-evoked pressor response and the LV fractional shortening, an index of LV function. In the second group of the experiment, immunocytochemistry was used to examine the immunoreactivity of P2X receptor in the DRG neurons of small diameter fibers in six healthy control rats, five small MI, and five large MI rats. The percentage of P2X immunostaining-positive neurons in the DRG was markedly greater in large MI rats (52% vs. 29% in controls and 34% in small MIs, P < 0.05). In conclusion, our findings demonstrate that 1) muscle afferent-mediated pressor response of P2X activation was exaggerated in MI animals, and the responsiveness was related to the degree of LV dysfunction; and 2) augmented reflex response was associated with upregulated P2X receptors in the DRG neurons of thin fiber afferent nerves following MI. The data suggest that P2X-mediated responsiveness in the processing of muscle afferent signals may have important implications for understanding cardiovascular responses to exercise in HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号