首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Folate deficiency has been shown to influence carcinogenesis by creating an imbalance in the base excision repair (BER) pathway, affecting BER homeostasis. The inability to mount a BER response to oxidative stress in a folate-deficient environment results in the accumulation of DNA repair intermediates, i.e., DNA strand breaks. Our data indicate that upregulation of β-pol expression in response to oxidative stress is inhibited by folate deficiency at the level of gene expression. Alteration in the expression of β-pol in a folate-deficient environment is not due to epigenetic changes in the core promoter of the β-pol gene, i.e., the CpG islands within the β-pol promoter remain unmethylated in the presence or absence of folate. However, the promoter analysis studies show a differential binding of regulatory factors to the -36 to -7 region (the folic acid-response region, FARR) within the core promoter of β-pol. Moreover, we observe a tight correlation between the level of binding of regulatory factors with the FARR and inhibition of β-pol expression. Based on these findings, we propose that folate deficiency results in an upregulation/stability of negative regulatory factors interacting with FARR, repressing the upregulation of the β-pol gene in response to oxidative stress.  相似文献   

2.
In Schizosaccharomyces pombe , the Ataxia Telangiectasia-mutated (Atm)/Atm and Rad 3 Related (Atr) homologue Rad3 is an essential regulator of the response to DNA damage and stalled replication forks. Rad3 activates the downstream kinases Chk1 and Cds1. These kinases in turn inhibit cell cycle progression by mediating Cdc2 phosphorylation. Studies in both yeast and mammalian cells suggest additional roles for Rad3 in regulating cellular responses to environmental stress. In S. pombe , cellular responses to various environmental stresses are regulated primarily through the stress-activated MAP kinase p38 homologue Sty1. An important function of Sty1 is to drive cells rapidly through mitosis by facilitating the accumulation of Cdc25. Interestingly, Sty1 is activated simultaneously with Rad3 following exposure to UV radiation or ionizing radiation (IR). Similarly, exposure to environmental stresses induces the expression of rad3 +, cds1 + and other checkpoint regulator genes. It is currently unclear how the pathways regulated by Sty1 and Rad3 and their opposing effects on mitosis are integrated. Recent studies suggest that Sty1 and Rad3 function together to regulate the expression of several stress response genes following exposure to IR. In this review, we discuss current knowledge on the interaction of Rad3/Atm and Sty1/p38 in regulating cellular responses to environmental stress and DNA damage.  相似文献   

3.
Huen MS  Chen J 《Cell research》2008,18(1):8-16
Post-translational modifications play a crucial role in coordinating cellular response to DNA damage. Recent evidence suggests an interplay between multiple protein modifications, including phosphorylation, ubiquitylation, acetylation and sumoylation, that combine to propagate the DNA damage signal to elicit cell cycle arrest, DNA repair, apoptosis and senescence. Utility of specific post-translational modifiers allows temporal and spatial control over protein relo-calization and interactions, and may represent a means for trans-regulatory activation of protein activities. The ability to recognize these specific modifiers also underscores the capacity for signal amplification, a crucial step for the maintenance of genomic stability and tumor prevention. Here we have summarized recent findings that highlight the complexity of post-translational modifications in coordinating the DNA damage response, with emphasis on the DNA damage signaling cascade.  相似文献   

4.
Molecular and Cellular Biochemistry - DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1...  相似文献   

5.
WRNIP1 (WRN-interacting protein 1) was first identified as a factor that interacts with WRN, the protein that is defective in Werner syndrome (WS). WRNIP1 associates with DNA polymerase η (Polη), but the biological significance of this interaction remains unknown. In this study, we analyzed the functional interaction between WRNIP1 and Polη by generating knockouts of both genes in DT40 chicken cells. Disruption of WRNIP1 in Polη-disrupted (POLH−/−) cells suppressed the phenotypes associated with the loss of Polη: sensitivity to ultraviolet light (UV), delayed repair of cyclobutane pyrimidine dimers (CPD), elevated frequency of mutation, elevated levels of UV-induced sister chromatid exchange (SCE), and reduced rate of fork progression after UV irradiation. These results suggest that WRNIP1 functions upstream of Polη in the response to UV irradiation.  相似文献   

6.
The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.  相似文献   

7.
8.
Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.  相似文献   

9.
The oxidized base 7,8-oxoguanine (8-oxo-G) is the most common DNA lesion generated by reactive oxygen species. This lesion is highly mutagenic due to the frequent misincorporation of A opposite 8-oxo-G during DNA replication. In mammalian cells, the DNA polymerase (pol) family X enzyme DNA pol λ catalyzes the correct incorporation of C opposite 8-oxo-G, together with the auxiliary factor proliferating cell nuclear antigen (PCNA). Here, we show that Arabidopsis thaliana DNA pol λ, the only member of the X family in plants, is as efficient in performing error-free translesion synthesis past 8-oxo-G as its mammalian homolog. Arabidopsis, in contrast with animal cells, possesses two genes for PCNA. Using in vitro and in vivo approaches, we observed that PCNA2, but not PCNA1, physically interacts with DNA pol λ, enhancing its fidelity and efficiency in translesion synthesis. The levels of DNA pol λ in transgenic plantlets characterized by overexpression or silencing of Arabidopsis POLL correlate with the ability of cell extracts to perform error-free translesion synthesis. The important role of DNA pol λ is corroborated by the observation that the promoter of POLL is activated by UV and that both overexpressing and silenced plants show altered growth phenotypes.  相似文献   

10.
A wide variety of oxidative DNA lesions are commonly present in untreated human and animal DNA. One of these lesions, 8-hydroxydeoxyguanosine, has been shown to lead to base mispairing (mutation) on DNA replication. Other lesions remain to be investigated in this respect. Oxidative DNA lesions on cell replication may, in appropriate circumstances, lead to proto-oncogene activation. Oxidative DNA damage, on fixation, may also lead to cytotoxicity followed by regenerative proliferation. The probable or possible importance of oxidative DNA damage is reviewed for various classes of carcinogens and natural processes, including metal ions, high-energy radiation, miscellaneous chemicals, tumor-promoting agents, polyhydroxyphenols/quinones, lipid metabolism, peroxisome proliferators and thyroid function. It is concluded that although the evidence needs considerable strengthening in many of these examples, the available information indicates the potential importance of oxidative DNA damage in the induction of tumors by these agents. It is also possible that non-cancerous degenerative diseases associated with aging are the result of the accumulation of lesions resulting from unrepaired oxidative DNA damage.  相似文献   

11.
DNA damaging agents are widely used in treatment of hematogical malignancies and solid tumors. While effects on hematopoietic stem cells have been characterized, less is known about the DNA damage response in human mesenchymal stem cells (hMSCs) in the bone marrow stroma, progenitors of osteoblasts, chondrocytes and adipocytes. To elucidate the response of undifferentiated hMSCs to γ-irradiation and cisplatin, key DNA damage responses have been characterised in hMSCs from normal adult donors. Cisplatin and γ-irradiation activated the DNA damage response in hMSCs, including induction of p53 and p21, and activation of PI3 kinase-related protein kinase (PIKK)-dependent phosphorylation of histone H2AX on serine 139, and replication protein A2 on serine4/serine8. Chemical inhibition of ATM or DNA-PK reduced DNA damage-induced phosphorylation of H2AX, indicating a role for both PIKKs in the response of hMSCs to DNA damage. Consistent with repair of DNA strand breaks, γ-H2AX staining decreased by 24 hours following gamma-irradiation. γ-irradiation arrested hMSCs in the G1 phase of the cell cycle, while cisplatin induced S-phase arrest, mediated in part by the ATR/Chk1 checkpoint pathway. In hMSCs isolated from a chronic lymphocytic leukemia (CLL) patient, p53 and p21 were induced by cisplatin and γ-irradiation, while RPA2 was phosphorylated on serine4/8 in particular following cisplatin. Compared to peripheral blood lymphocytes or the leukemia cell line K562, both normal hMSCs and CLL-derived hMSCs were more resistant to cisplatin and γ-irradiation. These results provide insights into key pathways mediating the response of bone marrow-derived hMSCs to DNA damaging agents used in cancer treatment.  相似文献   

12.
Irradiation (X-ray; 5–15 Gy) of protoplasts treated with plasmid-DNA and PEG yielded higher transformation rates in comparison to non-irradiated protoplasts transformed by the same method. This could be demonstrated for four plant species. The irradiation doses used did not affect the total number of colonies regenerated without selection pressure, but resulted in 3–6-fold enhancement of hygromycin- or kanamycin-resistant colonies. Plant regeneration frequencies of transformed colonies derived from irradiated and non-irradiated protoplasts were similar in tobacco as well as in Petunia. Higher integration rates of foreign DNA as a consequence of an increased recombination machinery in irradiated cells may be responsible for the enhancement of the number of stably transformed colonies.  相似文献   

13.
Cells respond to ionizing radiation (IR)–induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin–remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs.  相似文献   

14.
15.
DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.  相似文献   

16.
17.
Elucidating the sources of genetic variation within microsatellite alleles has important implications for understanding the etiology of human diseases. Mismatch repair is a well described pathway for the suppression of microsatellite instability. However, the cellular polymerases responsible for generating microsatellite errors have not been fully described. We address this gap in knowledge by measuring the fidelity of recombinant yeast polymerase δ (Pol δ) and ? (Pol ?) holoenzymes during synthesis of a [GT/CA] microsatellite. The in vitro HSV-tk forward assay was used to measure DNA polymerase errors generated during gap-filling of complementary GT(10) and CA(10)-containing substrates and ~90 nucleotides of HSV-tk coding sequence surrounding the microsatellites. The observed mutant frequencies within the microsatellites were 4 to 30-fold higher than the observed mutant frequencies within the coding sequence. More specifically, the rate of Pol δ and Pol ? misalignment-based insertion/deletion errors within the microsatellites was ~1000-fold higher than the rate of insertion/deletion errors within the HSV-tk gene. Although the most common microsatellite error was the deletion of a single repeat unit, ~ 20% of errors were deletions of two or more units for both polymerases. The differences in fidelity for wild type enzymes and their exonuclease-deficient derivatives were ~2-fold for unit-based microsatellite insertion/deletion errors. Interestingly, the exonucleases preferentially removed potentially stabilizing interruption errors within the microsatellites. Since Pol δ and Pol ? perform not only the bulk of DNA replication in eukaryotic cells but also are implicated in performing DNA synthesis associated with repair and recombination, these results indicate that microsatellite errors may be introduced into the genome during multiple DNA metabolic pathways.  相似文献   

18.
Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint. Here, we show that a knockdown of DNA pol λ, but not of its close homologue DNA pol β, results in replication fork stress and activates the S phase checkpoint, slowing S phase progression in different human cancer cell lines. We furthermore show that DNA pol λ protects cells from oxidative DNA damage and also functions in rescuing stalled replication forks. Its absence becomes lethal for a cell when a functional checkpoint is missing, suggesting a DNA synthesis deficiency. Our results provide the first evidence, to our knowledge, that DNA pol λ is required for cell cycle progression and is functionally connected to the S phase DNA damage response machinery in cancer cells.  相似文献   

19.
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号