首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.

Background

The mass of pancreatic β-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous β-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of β-cells and investigated their physiological relevance in increased insulin demand conditions in rats.

Methods

Two rat β-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. βhigh and βlow-cells. Insulin release, Ca2+ movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, βhigh and βlow-cell distribution and functionality were investigated in animal models with decreased or increased β-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat.

Results

We show that β-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike βlow-cells, βhigh-cells express functional β-cell markers and are highly responsive to various insulin secretagogues. Whereas βlow-cells represent the main population in diabetic pancreas, an increase in βhigh-cells is associated with gain of function that follows sustained glucose overload.

Conclusion

Our data show that a functional heterogeneity of β-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in β-cell defects in type 2 diabetes.  相似文献   

2.

Background

Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF.

Methodology/Principal Findings

Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated.

Conclusions/Significance

Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival.  相似文献   

3.

Background

Growing evidence indicates that oxidative stress (OS), a persistent state of excess amounts of reactive oxygen species (ROS) along with reactive nitrogen species (RNS), plays an important role in insulin resistance, diabetic complications, and dysfunction of pancreatic β-cells. Pancreatic β-cells contain exceptionally low levels of antioxidant enzymes, rendering them susceptible to ROS-induced damage. Induction of antioxidants has been proposed to be a way for protecting β-cells against oxidative stress. Compared to other antioxidants that act against particular β-cell damages, metallothionein (MT) is the most effective in protecting β-cells from several oxidative stressors including nitric oxide, peroxynitrite, hydrogen peroxide, superoxide and streptozotocin (STZ). We hypothesized that MT overexpression in pancreatic β-cells would preserve β-cell function in C57BL/6J mice, an animal model susceptible to high fat diet-induced obesity and type 2 diabetes.

Research Design and Methods

The pancreatic β-cell specific MT overexpression was transferred to C57BL/6J background by backcrossing. We studied transgenic MT (MT-tg) mice and wild-type (WT) littermates at 8 weeks and 18 weeks of age. Several tests were performed to evaluate the function of islets, including STZ in vivo treatment, intraperitoneal glucose tolerance tests (IPGTT) and plasma insulin levels during IPGTT, pancreatic and islet insulin content measurement, insulin secretion, and islet morphology assessment. Gene expression in islets was performed by quantitative real-time PCR and PCR array analysis. Protein levels in pancreatic sections were evaluated by using immunohistochemistry.

Results

The transgenic MT protein was highly expressed in pancreatic islets. MT-tg overexpression significantly protected mice from acute STZ-induced ROS at 8 weeks of age; unexpectedly, however, MT-tg impaired glucose stimulated insulin secretion (GSIS) and promoted the development of diabetes. Pancreatic β-cell function was significantly impaired, and islet morphology was also abnormal in MT-tg mice, and more severe damage was detected in males. The unique gene expression pattern and abnormal protein levels were observed in MT-tg islets.

Conclusions

MT overexpression protected β-cells from acute STZ-induced ROS damages at young age, whereas it impaired GSIS and promoted the development of diabetes in adult C57BL/6J mice, and more severe damage was found in males.  相似文献   

4.

Background

Glucose modulates β-cell mass and function through an initial depolarization and Ca2+ influx, which then triggers a number of growth regulating signaling pathways. One of the most important downstream effectors in Ca2+ signaling is the calcium/Calmodulin activated serine threonine phosphatase, calcineurin. Recent evidence suggests that calcineurin/NFAT is essential for β-cell proliferation, and that in its absence loss of β-cells results in diabetes. We hypothesized that in contrast, activation of calcineurin might result in expansion of β-cell mass and resistance to diabetes.

Methodology/Principal Findings

To determine the role of activation of calcineurin signaling in the regulation of pancreatic β-cell mass and proliferation, we created mice that expressed a constitutively active form of calcineurin under the insulin gene promoter (caCnRIP). To our surprise, these mice exhibited glucose intolerance. In vitro studies demonstrated that while the second phase of Insulin secretion is enhanced, the overall insulin secretory response was conserved. Islet morphometric studies demonstrated decreased β-cell mass suggesting that this was a major component responsible for altered Insulin secretion and glucose intolerance in caCnRIP mice. The reduced β-cell mass was accompanied by decreased proliferation and enhanced apoptosis.

Conclusions

Our studies identify calcineurin as an important factor in controlling glucose homeostasis and indicate that chronic depolarization leading to increased calcineurin activity may contribute, along with other genetic and environmental factors, to β-cell dysfunction and diabetes.  相似文献   

5.
6.
7.

Aims

The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured β-cells. However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the effects of a truncated GIP analog, D-Ala2-GIP1–30 (D-GIP1–30), on glucose homeostasis and β-cell mass in rat models of diabetes.

Materials and Methods

The insulinotropic and pro-survival potency of D-GIP1–30 was evaluated in perfused pancreas preparations and cultured INS-1 β-cells, respectively, and receptor selectivity evaluated using wild type and GIP receptor knockout mice. Effects of D-GIP1–30 on β-cell function and glucose homeostasis, in vivo, were determined using Lean Zucker rats, obese Vancouver diabetic fatty rats, streptozotocin treated rats, and obese Zucker diabetic fatty rats, with effects on β-cell mass determined in histological studies of pancreatic tissue. Lipogenic effects of D-GIP1–30 were evaluated on cultured 3T3-L1 adipocytes.

Results

Acutely, D-GIP1–30 improved glucose tolerance and insulin secretion. Chronic treatment with D-GIP1–30 reduced levels of islet pro-apoptotic proteins in Vancouver diabetic fatty rats and preserved β-cell mass in streptozotocin treated rats and Zucker diabetic fatty rats, resulting in improved insulin responses and glycemic control in each animal model, with no change in body weight. In in vitro studies, D-GIP1–30 exhibited equivalent potency to GIP1–42 on β-cell function and survival, but greatly reduced action on lipoprotein lipase activity in 3T3-L1 adipocytes.

Conclusions

These findings demonstrate that truncated forms of GIP exhibit potent anti-diabetic actions, without pro-obesity effects, and that the C-terminus contributes to the lipogenic actions of GIP.  相似文献   

8.

Background

The endoplasmic reticulum (ER) is a cellular compartment for the biosynthesis and folding of newly synthesized secretory proteins such as insulin. Perturbations to ER homeostasis cause ER stress and subsequently activate cell signaling pathways, collectively known as the Unfolded Protein Response (UPR). IRE1α is a central component of the UPR. In pancreatic β-cells, IRE1α also functions in the regulation of insulin biosynthesis.

Principal Findings

Here we report that hyperactivation of IRE1α caused by chronic high glucose treatment or IRE1α overexpression leads to insulin mRNA degradation in pancreatic β-cells. Inhibition of IRE1α signaling using its dominant negative form prevents insulin mRNA degradation. Islets from mice heterozygous for IRE1α retain expression of more insulin mRNA after chronic high glucose treatment than do their wild-type littermates.

Conclusions/Significance

These results reveal a role of IRE1α in insulin mRNA expression under ER stress conditions caused by chronic high glucose. The rapid degradation of insulin mRNA could provide immediate relief for the ER and free up the translocation machinery. Thus, this mechanism would preserve ER homeostasis and help ensure that the insulin already inside the ER can be properly folded and secreted. This adaptation may be crucial for the maintenance of β-cell homeostasis and may explain why the β-cells of type 2 diabetic patients with chronic hyperglycemia stop producing insulin in the absence of apoptosis. This mechanism may also be involved in suppression of the autoimmune type 1 diabetes by reducing the amount of misfolded insulin, which could be a source of “neo-autoantigens.”  相似文献   

9.

Background & Aims

Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH.

Methods

To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies.

Results

In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12–8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes.

Conclusions

TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.  相似文献   

10.

Background

Type 2 diabetes results from failure of the β-cells to compensate for increased insulin demand due to abnormal levels of metabolic factors. The ob/ob(lep-/-) mouse has been extensively studied as an animal model of type 2 diabetes. Previous studies have shown a correlation between β-cell function and bioluminescent imaging in lean genetically engineered mice. The ability to noninvasively monitor β-cell function in ob/ob mice could provide new information on β-cell regulation in type 2 diabetes.

Methods

To create the B6 Albino ob/ob MIP-luc mice (ob/ob-luc), the ob/ob mouse was crossed with the CD1 MIP-luc mouse. All mice were backcrossed over multiple generations to ensure the genetic background of the transgenic mice was over 96% similar to the background of the original ob/ob mouse. Animal weight, blood glucose levels, insulin in plasma, and in vivo bioluminescence (BLI) were monitored weekly or biweekly for up to 70 weeks of age. BL imaging was performed using IVIS Spectrum (Perkin Elmer) and calculated by integrating the bioluminescence signal between 5 and 10 min after i.v. injection of D-luciferin. Insulin immunohistochemistry determined islet beta cell count and insulin secretion assay determined islet insulin function.

Results

There were significant increases in BLI and insulin levels as the ob/ob-luc mice aged while glucose levels gradually decreased. Ob/ob-luc were sacrificed at different time points to determine ex vivo BLI, islet function and total β-cell numbers using a cell counting training algorithm developed for the Vectra image analysis system (Perkin Elmer). The number of β-cells increased as the mice aged and all three ex vivo measurements correlated with BLI.

Conclusions

The ob/ob-luc mice can serve as a model of metabolic stress, similar to human type 2 diabetes using BLI as a surrogate marker for β-cell function.  相似文献   

11.
Type I diabetes (T1D) is an autoimmune disease in which an immune response to pancreatic β-cells results in their loss over time. Although the conventional view is that this loss is due to autoimmune destruction, we present evidence of an additional phenomenon in which autoimmunity promotes islet endocrine cell transdifferentiation. The end result is a large excess of δ-cells, resulting from α- to β- to δ-cell transdifferentiation. Intermediates in the process of transdifferentiation were present in murine and human T1D. Here, we report that the peptide caerulein was sufficient in the context of severe β-cell deficiency to induce efficient induction of α- to β- to δ-cell transdifferentiation in a manner very similar to what occurred in T1D. This was demonstrated by genetic lineage tracing and time course analysis. Islet transdifferentiation proceeded in an islet autonomous manner, indicating the existence of a sensing mechanism that controls the transdifferentiation process within each islet. The finding of evidence for islet cell transdifferentiation in rodent and human T1D and its induction by a single peptide in a model of T1D has important implications for the development of β-cell regeneration therapies for diabetes.The response of a tissue to stress/injury can involve cell death and proliferation. However, it has become increasingly recognized that changes in cellular differentiation state can have an important role.1 In type I diabetes (T1D), the established view has been that the primary pathophysiological event is β-cell apoptosis due to a β-cell specific autoimmune response,2 leading to profound β-cell deficiency. Thus, there has been great interest in inducing β-cell neogenesis, but there has been controversy over how and even whether β-cell regeneration occurs.3Activation of dedicated stem/progenitor cells within the pancreas and transdifferentiation of other differentiated cell types to β-cells are two potential mechanisms. In the past, the prevailing paradigm has been that neogenesis proceeds by the activation of facultative β-cell stem/progenitors within pancreatic ducts.4, 5, 6, 7 However, more recent studies have not found evidence of robust β-cell neogenesis from ducts.8, 9, 10, 11 β-cell neogenesis from other cell types within the pancreas, including acinar12 and centroacinar13 cells has also been reported.Recently, we demonstrated robust β-cell neogenesis by transdifferentiation from preexisting α-cells in a model of T1D where severe β-cell deficiency was induced by high-dose alloxan.14, 15 In this model, β-cell neogenesis from α-cells was stimulated by pancreatic duct ligation (PDL).9, 15 Surgical reversal of PDL led to the recovery of β-cell mass and function by a combination of β-cell replication and β-cell neogenesis, demonstrating that β-cell regeneration by α- to β-cell neogenesis could be a robust approach to diabetes therapy,16 but PDL, which involves major surgery, is not a practical approach to therapy. Importantly, the relevance of α- to β-cell transdifferentiation to human biology remained unclear, as previous studies were performed in rodents.Here, we report the occurrence of efficient islet cell transdifferentiation using an entirely pharmacologically based approach where the peptide caerulein,17, 18 substituting for PDL, stimulated β-cell transdifferentiation from α-cells in mice rendered severely β-cell deficient by alloxan. Following caerulein plus alloxan, many of the neogenic β-cells went on to form δ-cells. In murine and human T1D, a similar process appeared to occur, where α-cells transdifferentiated into β-cells, which went on to form δ-cells. This led to a marked δ-cell excess in both murine and human T1D.The finding of endocrine cell transdifferentiation in T1D supports a new paradigm where β-cells, in addition to undergoing destruction by inflammatory mediators, undergo a dynamic process of neogenesis from α-cells and transdifferentiation to δ-cells. Controlling the neogenic process could lead to a new approach to diabetes therapy.  相似文献   

12.
13.
14.
15.

Objective

Mitochondrial oxidative stress is the basis for pancreatic β-cell apoptosis and a common pathway for numerous types of damage, including glucotoxicity and lipotoxicity. We cultivated mice pancreatic β-cell tumor Min6 cell lines in vitro and observed pancreatic β-cell apoptosis and changes in mitochondrial function before and after the addition of Exendin-4. Based on these observations, we discuss the protective role of Exendin-4 against mitochondrial oxidative damage and its relationship with Ca2+-independent phospholipase A2.

Methods

We established a pancreatic β-cell oxidative stress damage model using Min6 cell lines cultured in vitro with tert-buty1 hydroperoxide and hydrogen peroxide. We then added Exendin-4 to observe changes in the rate of cell apoptosis (Annexin-V-FITC-PI staining flow cytometry and DNA ladder). We detected the activity of the caspase 3 and 8 apoptotic factors, measured the mitochondrial membrane potential losses and reactive oxygen species production levels, and detected the expression of cytochrome c and Smac/DLAMO in the cytosol and mitochondria, mitochondrial Ca2-independent phospholipase A2 and Ca2+-independent phospholipase A2 mRNA.

Results

The time-concentration curve showed that different percentages of apoptosis occurred at different time-concentrations in tert-buty1 hydroperoxide- and hydrogen peroxide-induced Min6 cells. Incubation with 100 µmol/l of Exendin-4 for 48 hours reduced the Min6 cell apoptosis rate (p<0.05). The mitochondrial membrane potential loss and total reactive oxygen species levels decreased (p<0.05), and the release of cytochrome c and Smac/DLAMO from the mitochondria was reduced. The study also showed that Ca2+-independent phospholipase A2 activity was positively related to Exendin-4 activity.

Conclusion

Exendin-4 reduces Min6 cell oxidative damage and the cell apoptosis rate, which may be related to Ca2-independent phospholipase A2.  相似文献   

16.

Background

Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors.

Methodology/Prinicipal Findings

GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered.

Conclusions/Significance

The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling.  相似文献   

17.

Background

Oxidative stress (OS), through excessive and/or chronic reactive oxygen species (ROS), is a mediator of diabetes-related damages in various tissues including pancreatic β-cells. Here, we have evaluated islet OS status and β-cell response to ROS using the GK/Par rat as a model of type 2 diabetes.

Methodology/Principal Findings

Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1) gene expression was analyzed by qRT-PCR; 2) insulin secretion rate was measured; 3) ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4) antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H2O2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels) of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment.

Conclusions

The GK/Par model illustrates the effectiveness of adaptive response to OS by β-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par β-cell secretory dysfunction.  相似文献   

18.

Background

Voltage-dependent K+ channels (Kv) mediate repolarisation of β-cell action potentials, and thereby abrogate insulin secretion. The role of the Kv1.1 K+ channel in this process is however unclear. We tested for presence of Kv1.1 in different species and tested for a functional role of Kv1.1 by assessing pancreatic islet function in BALB/cByJ (wild-type) and megencephaly (mceph/mceph) mice, the latter having a deletion in the Kv1.1 gene.

Methodology/Principal Findings

Kv1.1 expression was detected in islets from wild-type mice, SD rats and humans, and expression of truncated Kv1.1 was detected in mceph/mceph islets. Full-length Kv1.1 protein was present in islets from wild-type mice, but, as expected, not in those from mceph/mceph mice. Kv1.1 expression was localized to the β-cell population and also to α- and δ-cells, with evidence of over-expression of truncated Kv1.1 in mceph/mceph islets. Blood glucose, insulin content, and islet morphology were normal in mceph/mceph mice, but glucose-induced insulin release from batch-incubated islets was (moderately) higher than that from wild-type islets. Reciprocal blocking of Kv1.1 by dendrotoxin-K increased insulin secretion from wild-type but not mceph/mceph islets. Glucose-induced action potential duration, as well as firing frequency, was increased in mceph/mceph mouse β-cells. This duration effect on action potential in β-cells from mceph/mceph mice was mimicked by dendrotoxin-K in β-cells from wild-type mice. Observations concerning the effects of both the mceph mutation, and of dendrotoxin-K, on glucose-induced insulin release were confirmed in pancreatic islets from Kv1.1 null mice.

Conclusion/Significance

Kv1.1 channels are expressed in the β-cells of several species, and these channels can influence glucose-stimulated insulin release.  相似文献   

19.

Background

The deficit of pancreatic islet β cells caused by autoimmune destruction is a crucial issue in type 1 diabetes (T1D). It is essential to fundamentally control the autoimmunity for treatment of T1D. Regulatory T cells (Tregs) play a pivotal role in maintaining self-tolerance through their inhibitory impact on autoreactive effector T cells. An abnormality of Tregs is associated with initiation of progression of T1D.

Methodology/Principal Findings

Here, we report that treatment of established autoimmune-caused diabetes in NOD mice with purified autologous CD4+CD62L+ Tregs co-cultured with human cord blood stem cells (CB-SC) can eliminate hyperglycemia, promote islet β-cell regeneration to increase β-cell mass and insulin production, and reconstitute islet architecture. Correspondingly, treatment with CB-SC-modulated CD4+CD62L+ Tregs (mCD4CD62L Tregs) resulted in a marked reduction of insulitis, restored Th1/Th2 cytokine balance in blood, and induced apoptosis of infiltrated leukocytes in pancreatic islets.

Conclusions/Significance

These data demonstrate that treatment with mCD4CD62L Tregs can reverse overt diabetes, providing a novel strategy for the treatment of type 1 diabetes as well as other autoimmune diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号