首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by loss of motor neurons. Familial ALS is strongly associated to dominant mutations in the gene for Cu/Zn superoxide dismutase (SOD1). Recent evidences point to skeletal muscle as a primary target in the ALS mouse model. Wnt/PI3 K signaling pathways and epithelial–mesenchymal transition (EMT) have important roles in maintenance and repair of skeletal muscle. Wnt/PI3 K pathways and EMT gene expression profile were investigated in gastrocnemius muscle from SOD1G93A mouse model and age-paired wild-type control in the presymptomatic ages of 40 and 80 days aiming the early neuromuscular abnormalities that precede motor neuron death in ALS. A customized cDNA microarray platform containing 326 genes of Wnt/PI3 K and EMT was used and results revealed eight up-regulated (Loxl2, Pik4ca, Fzd9, Cul1, Ctnnd1, Snf1lk, Prkx, Dner) and nine down-regulated (Pik3c2a, Ripk4, Id2, C1qdc1, Eif2ak2, Rac3, Cds1, Inppl1, Tbl1x) genes at 40 days, and also one up-regulated (Pik3ca) and five down-regulated (Cd44, Eef2 k, Fzd2, Crebbp, Piki3r1) genes at 80 days. Also, protein–protein interaction networks grown from the differentially expressed genes of 40 and 80 days old mice have identified Grb2 and Src genes in both presymptomatic ages, thus playing a potential central role in the disease mechanisms. mRNA and protein levels for Grb2 and Src were found to be increased in 80 days old ALS mice. Gene expression changes in the skeletal muscle of transgenic ALS mice at presymptomatic periods of disease gave further evidence of early neuromuscular abnormalities that precede motor neuron death. The results were discussed in terms of initial triggering for neuronal degeneration and muscle adaptation to keep function before the onset of symptoms.  相似文献   

3.
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative multifactorial disease characterized, like other diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) or frontotemporal dementia (FTD), by the degeneration of specific neuronal cell populations. Motor neuron loss is distinctive of ALS. However, the causes of onset and progression of motor neuron death are still largely unknown. In about 2% of all cases, mutations in the gene encoding for the Cu/Zn superoxide dismutase (SOD1) are implicated in the disease. Several alterations in the expression or activation of cell cycle proteins have been described in the neurodegenerative diseases and related to cell death. In this work we show that mutant SOD1 can alter cell cycle in a cellular model of ALS. Our findings suggest that modifications in the cell cycle progression could be due to an increased interaction between mutant G93A SOD1 and Bcl-2 through the cyclins regulator p27. As previously described in post mitotic neurons, cell cycle alterations could fatally lead to cell death.  相似文献   

4.
The SOD1G93A mouse has been used since 1994 for preclinical testing in amyotrophic lateral sclerosis (ALS). Despite recent genetic advances in our understanding of ALS, transgenic mice expressing mutant SOD1 remain the best available, and most widely used, vertebrate model of the disease. We previously described an optimised and rapid approach for preclinical studies in the SOD1G93A mouse. Here we describe improvements to this approach using home cage running wheels to obtain daily measurements of motor function, with minimal intervention. We show that home cage running wheels detect reductions in motor function at a similar time to the rotarod test, and that the data obtained are less variable allowing the use of smaller groups of animals to obtain satisfactory results. This approach refines use of the SOD1G93A model, and reduces the number of animals undergoing procedures of substantial severity, two central principles of the 3Rs (replacement, reduction and refinement of animal use in research). The small group sizes and rapid timescales enable affordable large-scale therapeutic pre-screening in the SOD1G93A mouse, as well as rapid validation of published positive effects in a second laboratory, one of the major stumbling blocks in ALS preclinical therapy development.  相似文献   

5.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive death of motor neurons. Although the pathogenesis of ALS remains unclear, several cellular processes are known to be involved, including apoptosis. A previous study revealed the apoptosis-related gene c-Abl to be upregulated in sporadic ALS motor neurons.

Methodology/Findings

We investigated the possibility that c-Abl activation is involved in the progression of ALS and that c-Abl inhibition is potentially a therapeutic strategy for ALS. Using a mouse motor neuron cell line, we found that mutation of Cu/Zn-superoxide dismutase-1 (SOD1), which is one of the causative genes of familial ALS, induced the upregulation of c-Abl and decreased cell viability, and that the c-Abl inhibitor dasatinib inhibited cytotoxicity. Activation of c-Abl with a concomitant increase in activated caspase-3 was observed in the lumbar spine of G93A-SOD1 transgenic mice (G93A mice), a widely used model of ALS. The survival of G93A mice was improved by oral administration of dasatinib, which also decreased c-Abl phosphorylation, inactivated caspase-3, and improved the innervation status of neuromuscular junctions. In addition, c-Abl expression in postmortem spinal cord tissues from sporadic ALS patients was increased by 3-fold compared with non-ALS patients.

Conclusions/Significance

The present results suggest that c-Abl is a potential therapeutic target for ALS and that the c-Abl inhibitor dasatinib has neuroprotective properties in vitro and in vivo.  相似文献   

6.
BackgroundDietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord.ObjectiveWe analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio).MethodsBeginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study.ResultsDEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females.ConclusionD3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.  相似文献   

7.
Tau is a protein involved in regulation of microtubule stability, axonal differentiation and transport. Alteration of retrograde transport may lead to motor neuron degeneration. Thus alternative mRNA splicing and expression of tau isoforms were studied in a transgenic mouse model harboring the human SOD1 G93A mutation. The studies were performed on cortex, hippocampus and spinal cord of 64- and 120-day-old animals (presymptomatic and symptomatic stage) and wild type controls. Exon 10 was found in all studied tissues. The 2N isoform containing exons 2 and 3 (+2+3) and the 1N (+2−3) predominated over the 0N (−2−3) in brain regions of the studied mice. The 2N expression was significantly lower in cortex and hippocampus of symptomatic animals compared to analogue control tissues. The decrease in 2N expression resulted in lower levels of total tau mRNA and tau protein. No changes in tau expression were observed in spinal cord of studied animals.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with familial inheritance (fALS) in 5% to 10% of cases; 25% of those are caused by mutations in the superoxide dismutase 1 (SOD1) protein. More than 100 mutations in the SOD1 gene have been associated with fALS, altering the geometry of the active site, protein folding and the interaction between monomers. We performed a functional analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in 124 fALS SOD1 mutants. Eleven different algorithms were used to estimate the functional impact of the replacement of one amino acid on protein structure: SNPs&GO, PolyPhen-2, SNAP, PMUT, Sift, PhD-SNP, nsSNPAnalyzer, TANGO, WALTZ, LIMBO and FoldX. For the structural analysis, theoretical models of 124 SNPs of SOD1 were created by comparative modeling using the MHOLline workflow, which includes Modeller and Procheck. Models were aligned with the native protein by the TM-align algorithm. A human-curated database was developed using the server side include in Java, JMOL. The results of this functional analysis indicate that the majority of the 124 natural mutants are harmful to the protein structure and thus corroborate the correlation between the reported mutations and fALS. In the structural analysis, all models showed conformational changes when compared to wild-type SOD1, and the degree of structural alignment varied between them. The SOD1 database converge structural and functional analyses of SOD1; it is a vast resource for the molecular analysis of amyotrophic lateral sclerosis, which allows the user to expand his knowledge on the molecular basis of the disease. The SOD1 database is available at http://bioinfogroup.com/database.  相似文献   

9.
The work is a continuation of studies on tau expression and alternative splicing in the central nervous system of transgenic mice harboring human SOD1 with G93A amyotrophic lateral sclerosis (ALS)-associated mutation. Since age is an important risk factor for ALS, we expanded the studies into younger animals (age 5 and 25 days). We also included cerebellum, a structure not studied in the context of neurodegeneration in ALS. We found decreased total tau-mRNA expression in hippocampus but not in cortex and spinal cord of young transgenics, and a lack of exon 10 in 5-day-old mice. In cerebellum, the total tau-mRNA expression was increased in transgenic animals during the whole period of life, however at the symptomatic stage of ALS (age 120 days) the level of protein was decreased. It can be concluded that the SOD1 G93A mutation causes early alterations of tau expression in cns, which are not exclusively restricted to the upper and lower motor neuron.  相似文献   

10.
Abstract: The Gly93→Ala mutation in the Cu,Zn superoxide dismutase (Cu,Zn-SOD) gene (SOD1) found in some familial amyotrophic lateral sclerosis (FALS) patients has been shown to result in an aberrant increase in hydroxyl radical production by the mutant enzyme that may cause oxidative injury to spinal motor neurons. In the present study, we analyzed the extent of oxidative injury to lumbar and cervical spinal cord proteins in transgenic FALS mice that overexpress the SOD1 mutation [TgN(SOD1-G93A)G1H] in comparison with nontransgenic mice. Total protein oxidation was examined by spectrophotometric measurement of tissue protein carbonyl content by the dinitrophenylhydrazine (DNPH) assay. Four ages were investigated: 30 (pre-motor neuron pathology and clinical disease), 60 (after initiation of pathology, but pre-disease), 100 (~50% loss of motor neurons and function), and 120 (near complete hindlimb paralysis) days. Protein carbonyl content in 30-day-old TgN(SOD1-G93A)G1H mice was twice as high as the level found in age-matched nontransgenic mice. However, at 60 and 100 days of age, the levels were the same. Then, between 100 and 120 days of age, the levels in the TgN(SOD1-G93A)G1H mice increased dramatically (557%) compared with either the nontransgenic mice or transgenic animals that overexpress the wild-type human Cu,Zn-SOD [TgN(SOD1)N29]. The 100–120-day increase in spinal cord protein carbonyl levels was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoretic separation and western blot immunoassay, which enabled the identification of heavily oxidized individual proteins using a monoclonal antibody against DNPH-derivatized proteins. One of the more heavily oxidized protein bands (14 kDa) was identified by immunoprecipitation as largely Cu,Zn-SOD. Western blot comparison of the extent of Cu,Zn-SOD protein carbonylation revealed that the level in spinal cord samples from 120-day-old TgN(SOD1-G93A)G1H mice was significantly higher than that found in age-matched nontransgenic or TgN(SOD1)N29 mice. These results suggest that the increased hydroxyl radical production associated with the G93A SOD1 mutation and/or lipid peroxidation-derived radical species (peroxyl or alkoxyl) causes extensive protein oxidative injury and that the Cu,Zn-SOD itself is a key target, which may compromise its antioxidant function.  相似文献   

11.
Autosomal recessive mutations in the ALS2 gene lead to a clinical spectrum of motor dysfunction including juvenile onset amyotrophic lateral sclerosis (ALS2), primary lateral sclerosis, and hereditary spastic paraplegia. The 184-kDa alsin protein, encoded by the full-length ALS2 gene, contains three different guanine-nucleotide-exchange factor-like domains, which may play a role in the etiology of the disease. Multiple in vitro biochemical and cell biology assays suggest that alsin dysfunction affects endosome trafficking through a Rab5 small GTPase family-mediated mechanism. Four ALS2-deficient mouse models have been generated by different groups and used to study the behavioral and pathological impact of alsin deficiency. These mouse models largely fail to recapitulate hallmarks of motor neuron disease, but the subtle deficits that are observed in behavior and pathology have aided in our understanding of the relationship between alsin and motor dysfunction. In this review, we summarize recent clinical and molecular reports regarding alsin and attempt to place these results within the larger context of motor neuron disease.  相似文献   

12.
There is growing evidence of activated microglia and inflammatory processes in the cerebral cortex in amyotrophic lateral sclerosis (ALS). Activated microglia is characterized by increased expression of the 18 kDa translocator protein (TSPO) in the brain and may be a useful biomarker of inflammation. In this study, we evaluated neuroinflammation in ALS patients using a radioligand of TSPO, 18F-DPA-714. Ten patients with probable or definite ALS (all right-handed, without dementia, and untreated by riluzole or other medication that might bias the binding on the TSPO), were enrolled prospectively and eight healthy controls matched for age underwent a PET study. Comparison of the distribution volume ratios between both groups were performed using a Mann-Whitney’s test. Significant increase of distribution of volume ratios values corresponding to microglial activation was found in the ALS sample in primary motor, supplementary motor and temporal cortex (p = 0.009, p = 0.001 and p = 0.004, respectively). These results suggested that the cortical uptake of 18F-DPA-714 was increased in ALS patients during the “time of diagnosis” phase of the disease. This finding might improve our understanding of the pathophysiology of ALS and might be a surrogate marker of efficacy of treatment on microglial activation.  相似文献   

13.
肌萎缩性侧索硬化症(ALS)是运动神经元选择性死亡而导致运动功能障碍的神经性疾病,是成年人运动神经元病中最常见的疾病。已有很多学说讨论其发病机制,并且建立了ALS动物模型。随着现代生物学的发展和不同学科间的相互渗入,各种治疗策略在ALS模型实验中得到实践并有望用于临床。简要综述了ALS治疗方法在转基因动物模型中的研究进展。  相似文献   

14.
Neurofilament proteins synthesized in the cell body of neurons are assembled and transported into axons, where they influence axon radial growth, axonal transport, and nerve conduction velocities. In diseased states, neurofilaments accumulate in cell bodies and proximal axons of affected neurons, and these lesions are characteristic of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), spinal muscular atrophy (SMA), Charcot-Marie-Tooth disease type 2 (CMT2), and hereditary sensory motor neuropathy. Although the molecular mechanisms that contribute to these accumulations are not yet identified, transgenic mouse models are beginning to provide insight into the role of neurofilament transport in disease-related dysfunction of neurons. This review addresses axonal transport in mouse models of ALS and the special significance of neurofilament transport in this disease.  相似文献   

15.
Several lines of evidence support the hypothesis of a toxic role played by wild type SOD1 (WT-SOD1) in the pathogenesis of sporadic amyotrophic lateral sclerosis (SALS). In this study we investigated both distribution and expression profile of WT-SOD1 in leukocytes from 19 SALS patients and 17 healthy individuals. Immunofluorescence experiments by confocal microscopy showed that SOD1 accumulates in the nuclear compartment in a group of SALS subjects. These results were also confirmed by western blot carried out on soluble nuclear and cytoplasmic fractions, with increased nuclear SOD1 level (p<0.05). In addition, we observed the presence of cytoplasmic SOD1 aggregates in agreement with an increased amount of the protein recovered by the insoluble fraction. A further confirmation of the overall increased level of SOD1 has been obtained from single cells analysis using flow cytometry as cells from SALS patients showed an higher SOD1 protein content (p<0.05). These findings add further evidence to the hypothesis of an altered WT-SOD1 expression profile in peripheral blood mononuclear cells (PBMCs) from patients with ALS suggesting that WT-SOD1 species with different degrees of solubility could be involved in the pathogenesis of the disease.  相似文献   

16.
Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease, and accumulating evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. The aim of this work was to investigate the effect of treatment with hydrogen molecule on the development of disease in mutant SOD1 G93A transgenic mouse model of ALS. Treatment of mutant SOD1 G93A mice with hydrogen-rich saline (HRS, i.p.) significantly delayed disease onset and prolonged survival, and attenuated loss of motor neurons and suppressed microglial and glial activation. Treatment of mutant SOD1 G93A mice with HRS inhibited the release of mitochondrial apoptogenic factors and the subsequent activation of downstream caspase-3. Furthermore, treatment of mutant SOD1 G93A mice with HRS reduced levels of protein carbonyl and 3-nitrotyrosine, and suppressed formation of reactive oxygen species (ROS), peroxynitrite, and malondialdehyde. Treatment of mutant SOD1 G93A mice with HRS preserved mitochondrial function, marked by restored activities of Complex I and IV, reduced mitochondrial ROS formation and enhanced mitochondrial adenosine triphosphate synthesis. In conclusion, hydrogen molecule may be neuroprotective against ALS, possibly through abating oxidative and nitrosative stress and preserving mitochondrial function.  相似文献   

17.
Mutations in copper/zinc superoxide dismutase (SOD1) are associated with a familial form of amyotrophic lateral sclerosis (ALS), and their expression in transgenic mice produces an ALS-like syndrome. Here we show that, during the course of the disease, the spinal cord of transgenic mice expressing mutant SOD1 (mSOD1) is the site not only of a progressive loss of motor neurons, but also of a dramatic gliosis characterized by reactive astrocytes and activated microglial cells. These changes are absent from the spinal cord of age-matched transgenic mice expressing normal SOD1 and of wild-type mice. We also demonstrate that, during the course of the disease, the expression of inducible nitric oxide synthase (iNOS) increases. In both early symptomatic and end-stage transgenic mSOD1 mice, numerous cells with the appearance of glial cells are strongly iNOS-immunoreactive. In addition, iNOS mRNA level and catalytic activity are increased significantly in the spinal cord of these transgenic mSOD1 mice. None of these alterations are seen in the cerebellum of these animals, a region unaffected by mSOD1. Similarly, no up-regulation of iNOS is detected in the spinal cord of age-matched transgenic mice expressing normal SOD1 or of wild-type mice. The time course of the spinal cord gliosis and iNOS up-regulation parallels that of motor neuronal loss in transgenic mSOD1 mice. Neuronal nitric oxide synthase expression is only seen in neurons in the spinal cord of transgenic mSOD1 mice, regardless of the stage of the disease, and of age-matched transgenic mice expressing normal SOD1 and wild-type mice. Collectively, these data suggest that the observed alterations do not initiate the death of motor neurons, but may contribute to the propagation of the neurodegenerative process. Furthermore, the up-regulation of iNOS, which in turn may stimulate the production of nitric oxide, provides further support to the presumed deleterious role of nitric oxide in the pathogenesis of ALS. This observation also suggests that iNOS may represent a valuable target for the development of new therapeutic avenues for ALS.  相似文献   

18.
Multiple sclerosis is an immune-mediated, demyelinating and neurodegenerative disease that currently lacks any neuroprotective treatments. Innovative neuroprotective trial designs are required to hasten the translational process of drug development. An ideal target to monitor the efficacy of strategies aimed at treating multiple sclerosis is the visual system, which is the most accessible part of the human central nervous system. A novel C57BL/6 mouse line was generated that expressed transgenes for a myelin oligodendrocyte glycoprotein-specific T cell receptor and a retinal ganglion cell restricted-Thy1 promoter-controlled cyan fluorescent protein. This model develops spontaneous or induced optic neuritis, in the absence of paralytic disease normally associated with most rodent autoimmune models of multiple sclerosis. Demyelination and neurodegeneration could be monitored longitudinally in the living animal using electrophysiology, visual sensitivity, confocal scanning laser ophthalmoscopy and optical coherence tomography all of which are relevant to human trials. This model offers many advantages, from a 3Rs, economic and scientific perspective, over classical experimental autoimmune encephalomyelitis models that are associated with substantial suffering of animals. Optic neuritis in this model led to inflammatory damage of axons in the optic nerve and subsequent loss of retinal ganglion cells in the retina. This was inhibited by the systemic administration of a sodium channel blocker (oxcarbazepine) or intraocular treatment with siRNA targeting caspase-2. These novel approaches have relevance to the future treatment of neurodegeneration of MS, which has so far evaded treatment.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is currently an incurable fatal motor neuron syndrome characterized by progressive weakness, muscle wasting and death ensuing 3–5 years after diagnosis. Neurotrophic factors (NTFs) are known to be important in both nervous system development and maintenance. However, the attempt to translate the potential of NTFs into the therapeutic options remains limited despite substantial number of approaches, which have been tested clinically. Using quantitative RT-PCR (qRT-PCR) technique, the present study investigated mRNA expression of four different NTFs: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4) and glial cell line-derived neurotrophic factor (GDNF) in limb muscles and extraocular muscles (EOMs) from SOD1G93A transgenic mice at early and terminal stages of ALS. General morphological examination revealed that muscle fibres were well preserved in both limb muscles and EOMs in early stage ALS mice. However, in terminal ALS mice, most muscle fibres were either atrophied or hypertrophied in limb muscles but unaffected in EOMs. qRT-PCR analysis showed that in early stage ALS mice, NT-4 was significantly down-regulated in limb muscles whereas NT-3 and GDNF were markedly up-regulated in EOMs. In terminal ALS mice, only GDNF was significantly up-regulated in limb muscles. We concluded that the early down-regulation of NT-4 in limb muscles is closely associated with muscle dystrophy and dysfunction at late stage, whereas the early up-regulations of GDNF and NT-3 in EOMs are closely associated with the relatively well-preserved muscle morphology at late stage. Collectively, the data suggested that comparing NTFs expression between limb muscles and EOMs from different stages of ALS animal models is a useful method in revealing the patho-physiology and progression of ALS, and eventually rescuing motor neuron in ALS patients.  相似文献   

20.
In good accord with the protein aggregation hypothesis for neurodegenerative diseases, ALS-associated SOD1 mutations are found to reduce structural stability or net repulsive charge. Moreover there are weak indications that the ALS disease progression rate is correlated with the degree of mutational impact on the apoSOD1 structure. A bottleneck for obtaining more conclusive information about these structure-disease relationships, however, is the large intrinsic variability in patient survival times and insufficient disease statistics for the majority of ALS-provoking mutations. As an alternative test of the structure-disease relationship we focus here on the SOD1 mutations that appear to be outliers in the data set. The results identify several ALS-provoking mutations whose only effect on apoSOD1 is the elimination or introduction of a single charge, i.e. D76V/Y, D101N, and N139D/K. The thermodynamic stability and folding behavior of these mutants are indistinguishable from the wild-type control. Moreover, D101N is an outlier in the plot of stability loss versus patient survival time by having rapid disease progression. Common to the identified mutations is that they truncate conserved salt-links and/or H-bond networks in the functional loops IV or VII. The results show that the local impact of ALS-associated mutations on the SOD1 molecule can sometimes overrun their global effects on apo-state stability and net repulsive charge, and point at the analysis of property outliers as an efficient strategy for mapping out new ALS-provoking features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号