首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial souring (production of hydrogen sulfide by sulfate-reducing bacteria, SRB) in crushed Berea sandstone columns with oil field-produced water consortia incubated at 60°C was inhibited by the addition of nitrate (NO3) or nitrite (NO 2 ). Added nitrate (as nitrogen) at a concentration of 0.71 mM resulted in the production of 0.57–0.71 mM nitrite by the native microbial population present during souring and suppressed sulfate reduction to below detection limits. Nitrate added at 0.36 mM did not inhibit active souring but was enough to maintain inhibition if the column had been previously treated with 0.71 mM or greater. Continuous addition of 0.71–0.86 mM nitrite also completely inhibited souring in the column. Pulses of nitrite were more effective than the same amount of nitrite added continuously. Nitrite was more effective at inhibiting souring than was glutaraldehyde, and SRB recovery was delayed longer with nitrite than with glutaraldehyde. It was hypothesized that glutaraldehyde killed SRB while nitrite provided a long-term inhibition without cell death. Removal of nitrate after as long as 3 months of continuous addition allowed SRB in a biofilm to return to their previous level of activity. Inhibition was achieved with much lower levels of nitrate and nitrite, and at higher temperatures, than noted by other researchers.  相似文献   

2.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

3.
Nitrate injection into oil reservoirs can prevent and remediate souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB). Nitrate stimulates nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) and heterotrophic nitrate-reducing bacteria (hNRB) that compete with SRB for degradable oil organics. Up-flow, packed-bed bioreactors inoculated with water produced from an oil field and injected with lactate, sulfate, and nitrate served as sources for isolating several NRB, including Sulfurospirillum and Thauera spp. The former coupled reduction of nitrate to nitrite and ammonia with oxidation of either lactate (hNRB activity) or sulfide (NR-SOB activity). Souring control in a bioreactor receiving 12.5 mM lactate and 6, 2, 0.75, or 0.013 mM sulfate always required injection of 10 mM nitrate, irrespective of the sulfate concentration. Community analysis revealed that at all but the lowest sulfate concentration (0.013 mM), significant SRB were present. At 0.013 mM sulfate, direct hNRB-mediated oxidation of lactate by nitrate appeared to be the dominant mechanism. The absence of significant SRB indicated that sulfur cycling does not occur at such low sulfate concentrations. The metabolically versatile Sulfurospirillum spp. were dominant when nitrate was present in the bioreactor. Analysis of cocultures of Desulfovibrio sp. strain Lac3, Lac6, or Lac15 and Sulfurospirillum sp. strain KW indicated its hNRB activity and ability to produce inhibitory concentrations of nitrite to be key factors for it to successfully outcompete oil field SRB.  相似文献   

4.
Souring, the production of hydrogen sulfide by sulfate-reducing bacteria (SRB) in oil reservoirs, can be controlled through nitrate or nitrite addition. To assess the effects of this containment approach on corrosion, metal coupons were installed in up-flow packed-bed bioreactors fed with medium containing 8 mM sulfate and 25 mM lactate. Following inoculation with produced water to establish biogenic H2S production, some bioreactors were treated with 17.5 mM nitrate or up to 20 mM nitrite, eliminating souring. Corrosion rates were highest near the outlet of untreated bioreactors (up to 0.4 mm year–1). Nitrate (17.5 mM) eliminated sulfide but gave pitting corrosion near the inlet of the bioreactor, whereas a high nitrite dose (20 mM) completely eliminated microbial activity and associated corrosion. More gradual, step-wise addition of nitrite up to 20 mM resulted in the retention of microbial activity and localized pitting corrosion, especially near the bioreactor inlet. We conclude that: (1) SRB control by nitrate or nitrite reduction shifts the corrosion risk from the bioreactor outlet to the inlet (i.e. from production to injection wells) and (2) souring treatment by continuous addition of a high inhibitory nitrite dose is preferable from a corrosion-prevention point of view.  相似文献   

5.
Seawater injection into oil reservoirs for purposes of secondary oil recovery is frequently accompanied by souring (increased sulfide concentrations). Production of hydrogen sulfide causes various problems, such as microbiologically influenced corrosion (MIC) and deterioration of crude oil. Sulfate-reducing bacteria (SRB) are considered to be major players in souring. Volatile fatty acids (VFAs) in oil-field water are believed to be produced by microbial degradation of crude oil. The objective of this research was to investigate mechanisms of souring, focusing specifically on VFA production via crude oil biodegradation. To this end, a microbial consortium collected from an oil–water separator was suspended in seawater; crude oil or liquid n-alkane mixture was added to the culture medium as the sole carbon source, and the culture was incubated under anaerobic conditions for 190 days. Physicochemical analysis showed that preferential toluene degradation and sulfate reduction occurred concomitantly in the culture containing crude oil. Sulfide concentrations were much lower in the alkane-supplemented culture than in the crude oil-supplemented culture. These observations suggest that SRB are related to the toluene activation and VFA consumption steps of crude oil degradation. Therefore, the electron donors for SRB are not only VFA, but many components of crude oil, especially toluene. Alkanes were also degraded by microorganisms, but did not contribute to reservoir souring.  相似文献   

6.
Microbial control of biogenic production of hydrogen sulfide in oil fields was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in microbial cultures enriched from produced water of a Canadian oil reservoir. The presence of nitrate at concentrations up to 20 mM had little effect on the rate of sulfate reduction by a pure culture of Lac6. Addition of CVO imposed a strong inhibition effect on production of sulfide. In the absence of added nitrate SRB we were able to overcome this effect after an extended lag phase. Simultaneous addition of CVO and nitrate stopped the production of H2S immediately. The concentration of sulfide decreased to a negligible level due to nitrate-dependent sulfide oxidation activity of CVO. This was not prevented by raising the concentration of Na-lactate, the electron donor for sulfate reduction. Similar results were obtained with enrichment cultures. Enrichments of produced water with sulfide and nitrate were dominated by CVO, whereas enrichments with sulfate and Na-lactate were dominated by SRB. Addition of an NR-SOB enrichment to an SRB enrichment inhibited the production of sulfide. Subsequent addition of sufficient nitrate caused the sulfide concentration to drop to zero. A similar response was seen in the presence of nitrate alone, although after a pronounced lag time, it was needed for emergence of a sizable CVO population. The results of the present study show that two mechanisms are involved in microbial control of biogenic sulfide production. First, addition of NR-SOB imposes an inhibition effect, possibly by increasing the environmental redox potential to levels which are inhibitory for SRB. Second, in the presence of sufficient nitrate, NR-SOB oxidize sulfide, leading to its complete removal from the environment. Successful microbial control of H2S in an oil reservoir is crucially dependent on the simultaneous presence of NR-SOB (either indigenous population or injected) and nitrate in the environment.  相似文献   

7.
Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions.  相似文献   

8.
Sulfide accumulation due to bacterial sulfate reduction is responsible for a number of serious problems in the oil industry. Among the strategies to control the activity of sulfate-reducing bacteria (SRB) is the use of nitrate, which can exhibit a variety of effects. We investigated the relevance of this approach to souring oil fields in Oklahoma and Alberta in which water flooding is used to enhance oil recovery. SRB and nitrate-reducing bacteria (NRB) were enumerated in produced waters from both oil fields. In the Oklahoma field, the rates of sulfate reduction ranged from 0.05 to 0.16 μM S day−1 at the wellheads, and an order of magnitude higher at the oil–water separator. Sulfide production was greatest in the water storage tanks in the Alberta field. Microbial counts alone did not accurately reflect the potential for microbial activities. The majority of the sulfide production appeared to occur after the oil was pumped aboveground, rather than in the reservoir. Laboratory experiments showed that adding 5 and 10 mM nitrate to produced waters from the Oklahoma and Alberta oil fields, respectively, decreased the sulfide content to negligible levels and increased the numbers of NRB. This work suggests that sulfate reduction control measures can be concentrated on aboveground facilities, which will decrease the amount of sulfide reinjected into reservoirs during the disposal of oil field production waters. Journal of Industrial Microbiology & Biotechnology (2001) 27, 80–86. Received 30 January 2001/ Accepted in revised form 30 June 2001  相似文献   

9.
Biogenic production of hydrogen sulphide (H2S) is a problem for the oil industry as it leads to corrosion and reservoir souring. Continuous injection of a low nitrate concentration (0.25–0.33 mM) replaced glutaraldehyde as corrosion and souring control at the Veslefrikk and Gullfaks oil field (North Sea) in 1999. The response to nitrate treatment was a rapid reduction in number and activity of sulphate-reducing bacteria (SRB) in the water injection system biofilm at both fields. The present long-term study shows that SRB activity has remained low at ≤0.3 and ≤0.9 μg H2S/cm2/day at Veslefrikk and Gullfaks respectively, during the 7–8 years with continuous nitrate injection. At Veslefrikk, 16S rRNA gene based community analysis by PCR–DGGE showed that bacteria affiliated to nitrate-reducing sulphide-oxidizing Sulfurimonas (NR–SOB) formed major populations at the injection well head throughout the treatment period. Downstream of deaerator the presence of Sulfurimonas like bacteria was less pronounced, and were no longer observed 40 months into the treatment period. The biofilm community during nitrate treatment was highly diverse and relative stable for long periods of time. At the Gullfaks field, a reduction in corrosion of up to 40% was observed after switch to nitrate treatment. The present study show that nitrate injection may provide a stable long-term inhibition of SRB in sea water injection systems, and that corrosion may be significantly reduced when compared to traditional biocide treatment.  相似文献   

10.
Thermophilic sulfate-reducing bacteria (tSRB) can be major contributors to the production of H2S (souring) in oil reservoirs. Two tSRB enrichments from a North Sea oil field, NS-tSRB1 and NS-tSRB2, were obtained at 58°C with acetate-propionate-butyrate and with lactate as the electron donor, respectively. Analysis by rDNA sequencing indicated the presence of Thermodesulforhabdus norvegicus in NS-tSRB1 and of Archaeoglobus fulgidus in NS-tSRB2. Nitrate (10 mM) had no effect on H2S production by mid-log phase cultures of NS-tSRB1 and NS-tSRB2, whereas nitrite (0.25 mM or higher) inhibited sulfate reduction. NS-tSRB1 did not recover from inhibition, whereas sulfate reduction activity of NS-tSRB2 recovered after 500 h. Nitrite was also effective in souring inhibition and H2S removal in upflow bioreactors, whereas nitrate was similarly ineffective. Hence, nitrite may be preferable for souring prevention in some high-temperature oil fields because it reacts directly with sulfide and provides long-lasting inhibition of sulfate reduction.  相似文献   

11.
Sulfate-reducing bacteria (SRB) are inhibited by nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) in the presence of nitrate. This inhibition has been attributed either to an increase in redox potential or to production of nitrite by the NR-SOB. Nitrite specifically inhibits the final step in the sulfate reduction pathway. When the NR-SOB Thiomicrospira sp. strain CVO was added to mid-log phase cultures of the SRB Desulfovibrio vulgaris Hildenborough in the presence of nitrate, sulfate reduction was inhibited. Strain CVO reduced nitrate and oxidized sulfide, with transient production of nitrite. Sulfate reduction by D. vulgaris resumed once nitrite was depleted. A DNA macroarray with open reading frames encoding enzymes involved in energy metabolism of D. vulgaris was used to study the effects of NR-SOB on gene expression. Shortly following addition of strain CVO, D. vulgaris genes for cytochrome c nitrite reductase and hybrid cluster proteins Hcp1 and Hcp2 were upregulated. Genes for sulfate reduction enzymes, except those for dissimilatory sulfite reductase, were downregulated. Genes for the membrane-bound electron transferring complexes QmoABC and DsrMKJOP were downregulated and unaffected, respectively, whereas direct addition of nitrite downregulated both operons. Overall the gene expression response of D. vulgaris upon exposure to strain CVO and nitrate resembled that observed upon direct addition of nitrite, indicating that inhibition of SRB is primarily due to nitrite production by NR-SOB.  相似文献   

12.
Effect of Nitrate on Biogenic Sulfide Production   总被引:12,自引:7,他引:5       下载免费PDF全文
The addition of 59 mM nitrate inhibited biogenic sulfide production in dilute sewage sludge (10% [vol/vol]) amended with 20 mM sulfate and either acetate, glucose, or hydrogen as electron donors. Similar results were found when pond sediment or oil field brines served as the inoculum. Sulfide production was inhibited for periods of at least 6 months and was accompanied by the oxidation of resazurin from its colorless reduced state to its pink oxidized state. Lower amounts of nitrate (6 or 20 mM) and increased amounts of sewage sludge resulted in only transient inhibition of sulfide production. The addition of 156 mM sulfate to bottles with 59 mM nitrate and 10% (vol/vol) sewage sludge or pond sediment resulted in sulfide production. Nitrate, nitrite, and nitrous oxide were detected during periods where sulfide production was inhibited, whereas nitrate, nitrite, and nitrous oxide were below detectable levels at the time sulfide production began. The oxidation of resazurin was attributed to an increase in nitrous oxide which persisted in concentration of about 1.0 mM for up to 5 months. The numbers of sulfate-reducing organisms decreased from 106 CFU ml−1 sludge to less than detectable levels after prolonged incubation of oxidized bottles. The addition of 10 mM glucose to oxidized bottles after 14.5 weeks of incubation resulted in rereduction of the resazurin and subsequent sulfide production. The prolonged inhibition of sulfide production was attributed to an increase in oxidation-reduction potential due to biogenic production of nitrous oxide, which appeared to have a cytotoxic effect on sulfate-reducing populations.  相似文献   

13.
Biological souring and mitigation in oil reservoirs   总被引:1,自引:0,他引:1  
Souring in oilfield systems is most commonly due to the action of sulfate-reducing prokaryotes, a diverse group of anaerobic microorganisms that respire sulfate and produce sulfide (the key souring agent) while oxidizing diverse electron donors. Such biological sulfide production is a detrimental, widespread phenomenon in the petroleum industry, occurring within oil reservoirs or in topside processing facilities, under low- and high-temperature conditions, and in onshore or offshore operations. Sulfate reducers can exist either indigenously in deep subsurface reservoirs or can be “inoculated” into a reservoir system during oilfield development (e.g., via drilling operations) or during the oil production phase. In the latter, souring most commonly occurs during water flooding, a secondary recovery strategy wherein water is injected to re-pressurize the reservoir and sweep the oil towards production wells to extend the production life of an oilfield. The water source and type of production operation can provide multiple components such as sulfate, labile carbon sources, and sulfate-reducing communities that influence whether oilfield souring occurs. Souring can be controlled by biocides, which can non-specifically suppress microbial populations, and by the addition of nitrate (and/or nitrite) that directly impacts the sulfate-reducing population by numerous competitive or inhibitory mechanisms. In this review, we report on the diversity of sulfate reducers associated with oil reservoirs, approaches for determining their presence and effects, the factors that control souring, and the approaches (along with the current understanding of their underlying mechanisms) that may be used to successfully mitigate souring in low-temperature and high-temperature oilfield operations.  相似文献   

14.
Produced water from the Coleville oil field in Saskatchewan, Canada was used to inoculate continuous up-flow packed-bed bioreactors. When 7.8 mM sulfate and 25 mM lactate were present in the in-flowing medium, H(2)S production (souring) by sulfate-reducing bacteria (SRB) was prevented by addition of 17.5 mM nitrate or 20 mM nitrite. Changing the sulfate or lactate concentration of the in-flowing medium indicated that the concentrations of nitrate or nitrite required for containment of souring decreased proportionally with a lowered concentration of the electron donor lactate, while the sulfate concentration of the medium had no effect. Microbial communities were dominated by SRB. Nitrate addition did not give rise to changes in community composition, indicating that lactate oxidation and H(2)S removal were caused by the combined action of SRB and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Apparently the nitrite concentrations formed by these NR-SOB did not inhibit the SRB sufficiently to cause community shifts. In contrast, significant community shifts were observed upon direct addition of high concentrations (20 mM) of nitrite. Strains NO3A and NO2B, two newly isolated, nitrate-reducing bacteria (NRB) emerged as major community members. These were found to belong to the epsilon-division of the Proteobacteria, to be most closely related to Campylobacter lari, and to oxidize lactate with nitrate or nitrite as the electron acceptor. Thus the mechanism of microbial H(2)S removal in up-flow packed-bed bioreactors depended on whether nitrate (SRB/NR-SOB) or nitrite (SRB/NR-SOB as well as NRB) was used. However, the amount of nitrate or nitrite needed to completely remove H(2)S was dictated by the electron donor (lactate) concentration, irrespective of mechanism.  相似文献   

15.
The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increased in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation.  相似文献   

16.
Production-related petroleum microbiology: progress and prospects   总被引:1,自引:0,他引:1  
Microbial activity in oil reservoirs is common. Methanogenic consortia hydrolyze low molecular weight components to methane and CO2, transforming light oil to heavy oil to bitumen. The presence of sulfate in injection water causes sulfate-reducing bacteria to produce sulfide. This souring can be reversed by nitrate, stimulating nitrate-reducing bacteria. Removing biogenic sulfide is important, because it contributes to pitting corrosion and resulting pipeline failures. Increased water production eventually makes oil production uneconomic. Microbial fermentation products can lower oil viscosity or interfacial tension and produced biomass can block undesired flow paths to produce more oil. These biotechnologies benefit from increased understanding of reservoir microbial ecology through new sequence technologies and help to decrease the environmental impact of oil production.  相似文献   

17.
The effect of sulfate on methane production in Lake Mendota sediments was investigated to clarify the mechanism of sulfate inhibition of methanogenesis. Methanogenesis was shown to be inhibited by the addition of as little as 0.2 mM sulfate. Sulfate inhibition was reversed by the addition of either H2 or acetate. Methane evolved when inhibition was reversed by H2 additions was derived from 14CO2. Conversely, when acetate was added to overcome sulfate inhibition, the evolved methane was derived from [2-14C]acetate. A competition for available H2 and acetate was proposed as the mechanism by which sulfate inhibited methanogenesis. Acetate was shown to be metabolized even in the absence of methanogenic activity. In the presence of sulfate, the methyl position of acetate was converted to CO2. The addition of sulfate to sediments did not result in the accumulation of significant amounts of sulfide in the pore water. Sulfate additions did not inhibit methanogenesis unless greater than 100 mug of free sulfide per ml was present in the pore water. These results indicate that carbon and electron flow are altered when sulfate is added to sediments. Sulfate-reducing organisms appear to assume the role of methanogenic bacteria in sulfate-containing sediments by utilizing methanogenic precursors.  相似文献   

18.
长期注水开发促进了渤海湾海域油藏中硫酸盐还原菌(SRP)的生长繁殖,产生了大量H2S,引起油藏酸化(souring)等问题. 本文首先以改进的API RP 38培养基富集了渤海湾海域某油藏采出井井口采出液中的SRP,再通过批次试验研究了不同浓度NO3-和NO2-对SRP富集培养物SO42-还原活性的抑制效应. 结果表明: 渤海湾海域油藏中的SRP富集培养物SO42-还原活性较强,SO42-还原速率为10.4 mmol SO42-·d-1·g-1 dry cell;加入浓度为0.4、0.8、1.8、4.2 mmol·L-1NO3-时,SRP富集培养物的SO42-还原活性均可被抑制,维持时间分别为5、9、20和大于35 d;加入浓度为0.6、0.9、1.4、2.6或4.6 mmol·L-1的NO2-时,SO42-还原活性也被抑制,维持时间分别为3、12、22和大于39 d. SRP富集培养物具有异化NO3-还原成NH4+的代谢途径.当环境中同时存在SO42-、NO3-、NO2-时,SRP富集培养物优先利用NO3-和NO2-. SRP富集培养物对电子受体的优先利用及NO2-的毒性效应是NO3-/NO2-抑制渤海湾海域油藏中SO42-还原活性的主要原因.  相似文献   

19.
长期注水开发促进了渤海湾海域油藏中硫酸盐还原菌(SRP)的生长繁殖,产生了大量H2S,引起油藏酸化(souring)等问题. 本文首先以改进的API RP 38培养基富集了渤海湾海域某油藏采出井井口采出液中的SRP,再通过批次试验研究了不同浓度NO3-和NO2-对SRP富集培养物SO42-还原活性的抑制效应. 结果表明: 渤海湾海域油藏中的SRP富集培养物SO42-还原活性较强,SO42-还原速率为10.4 mmol SO42-·d-1·g-1 dry cell;加入浓度为0.4、0.8、1.8、4.2 mmol·L-1NO3-时,SRP富集培养物的SO42-还原活性均可被抑制,维持时间分别为5、9、20和大于35 d;加入浓度为0.6、0.9、1.4、2.6或4.6 mmol·L-1的NO2-时,SO42-还原活性也被抑制,维持时间分别为3、12、22和大于39 d. SRP富集培养物具有异化NO3-还原成NH4+的代谢途径.当环境中同时存在SO42-、NO3-、NO2-时,SRP富集培养物优先利用NO3-和NO2-. SRP富集培养物对电子受体的优先利用及NO2-的毒性效应是NO3-/NO2-抑制渤海湾海域油藏中SO42-还原活性的主要原因.  相似文献   

20.
Sulfide oxidation under chemolithoautotrophic denitrifying conditions   总被引:4,自引:0,他引:4  
Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号