首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrate is the preferred nitrogen source of higher plants and an essential nutrient for plant growth and development. Nitrate transporters (NRTs) play vital roles in the nitrate uptake and transportation. However, the NRT gene family in pineapple is still unexplored. In this study, we performed a genome-wide analysis of the pineapple genome and identified 48 NRT genes (AcNRTs) distributed unevenly across 9 chromosomes and 2 scaffolds. Phylogenetic analysis showed that these genes can be divided into three groups, namely, AcNRT1/PTR, AcNRT2 and AcNRT3/NAR1 with 44, 3 and 1 members, respectively. AcNRTs within the same phylogenetic group share similar gene structure and domain composition. In addition, syntenic and phylogenetic analyses identified 34 Arabidopsis NRT genes with 31 pineapple NRT genes as orthologs. By investigating the expression profiles of these genes in various tissues, we showed that the expression pattern of some AcNRTs genes is tissue-specific. Furthermore, we examined the expression of the AcNRT2s under nitrate starvation and found that AcNRT2.1 and AcNRT2.2 both have the strongest response in roots suggesting that AcNRTs may play a broad role in the pineapple in response to nitrate deficiency. Taken together, our data provide insights into the evolution and function of pineapple NRTs and pave a path for future functional investigation of pineapple NRTs genes.  相似文献   

2.
3.
4.
5.
Long-distance transport of nitrate requires xylem loading and unloading, a successive process that determines nitrate distribution and subsequent assimilation efficiency. Here, we report the functional characterization of NRT1.8, a member of the nitrate transporter (NRT1) family in Arabidopsis thaliana. NRT1.8 is upregulated by nitrate. Histochemical analysis using promoter-β-glucuronidase fusions, as well as in situ hybridization, showed that NRT1.8 is expressed predominantly in xylem parenchyma cells within the vasculature. Transient expression of the NRT1.8:enhanced green fluorescent protein fusion in onion epidermal cells and Arabidopsis protoplasts indicated that NRT1.8 is plasma membrane localized. Electrophysiological and nitrate uptake analyses using Xenopus laevis oocytes showed that NRT1.8 mediates low-affinity nitrate uptake. Functional disruption of NRT1.8 significantly increased the nitrate concentration in xylem sap. These data together suggest that NRT1.8 functions to remove nitrate from xylem vessels. Interestingly, NRT1.8 was the only nitrate assimilatory pathway gene that was strongly upregulated by cadmium (Cd2+) stress in roots, and the nrt1.8-1 mutant showed a nitrate-dependent Cd2+-sensitive phenotype. Further analyses showed that Cd2+ stress increases the proportion of nitrate allocated to wild-type roots compared with the nrt1.8-1 mutant. These data suggest that NRT1.8-regulated nitrate distribution plays an important role in Cd2+ tolerance.  相似文献   

6.
Several quantitative trait locus analyses have suggested that grain yield and nitrogen use efficiency are well correlated with nitrate storage capacity and efficient remobilization. This study of the Arabidopsis thaliana nitrate transporter NRT1.7 provides new insights into nitrate remobilization. Immunoblots, quantitative RT-PCR, β-glucuronidase reporter analysis, and immunolocalization indicated that NRT1.7 is expressed in the phloem of the leaf minor vein and that its expression levels increase coincidentally with the source strength of the leaf. In nrt1.7 mutants, more nitrate was present in the older leaves, less 15NO3 spotted on old leaves was remobilized into N-demanding tissues, and less nitrate was detected in the phloem exudates of old leaves. These data indicate that NRT1.7 is responsible for phloem loading of nitrate in the source leaf to allow nitrate transport out of older leaves and into younger leaves. Interestingly, nrt1.7 mutants showed growth retardation when external nitrogen was depleted. We conclude that (1) nitrate itself, in addition to organic forms of nitrogen, is remobilized, (2) nitrate remobilization is important to sustain vigorous growth during nitrogen deficiency, and (3) source-to-sink remobilization of nitrate is mediated by phloem.  相似文献   

7.
This study of the Arabidopsis thaliana nitrate transporter NRT1.6 indicated that nitrate is important for early embryo development. Functional analysis of cDNA-injected Xenopus laevis oocytes showed that NRT1.6 is a low-affinity nitrate transporter and does not transport dipeptides. RT-PCR, in situ hybridization, and β-glucuronidase reporter gene analysis showed that expression of NRT1.6 is only detectable in reproductive tissue (the vascular tissue of the silique and funiculus) and that expression increases immediately after pollination, suggesting that NRT1.6 is involved in delivering nitrate from maternal tissue to the developing embryo. In nrt1.6 mutants, the amount of nitrate accumulated in mature seeds was reduced and the seed abortion rate increased. In the mutants, abnormalities (i.e., excessive cell division and loss of turgidity), were found mainly in the suspensor cells at the one- or two-cell stages of embryo development. The phenotype of the nrt1.6 mutants revealed a novel role of nitrate in early embryo development. Interestingly, the seed abortion rate of the mutant was reduced when grown under N-deficient conditions, suggesting that nitrate requirements in early embryo development can be modulated in response to external nitrogen changes.  相似文献   

8.
We have identified nine oligopeptide transporter (OPT) orthologs (AtOPT1 to AtOPT9) in Arabidopsis. These proteins show significant sequence similarity to OPTs of Candida albicans (CaOpt1p), Schizosaccharomyces pombe (Isp4p), and Saccharomyces cerevisiae (Opt1p and Opt2p). Hydrophilicity plots of the OPTs suggest that they are integral membrane proteins with 12 to 14 transmembrane domains. Sequence comparisons showed that the AtOPTs form a distinct subfamily when compared with the fungal OPTs. Two highly conserved motifs (NPG and KIPPR) were found among all OPT members. The identification of multiple OPTs in Arabidopsis suggests that they may play different functional roles. This idea is supported by the fact that AtOPTs have a distinct, tissue-specific expression pattern. The cDNAs encoding seven of the AtOPTs were cloned into a yeast vector under the control of a constitutive promoter. AtOPT4 expressed in S. cerevisiae mediated the uptake of KLG-[3H]L. Similarly, expression of five of the seven AtOPT proteins expressed in yeast conferred the ability to uptake tetra- and pentapeptides as measured by growth. This study provides new evidence for multiple peptide transporter systems in Arabidopsis, suggesting an important physiological role for small peptides in plants.  相似文献   

9.
<正>Nitrogen(N)is one of most important nutrients for crop production,which makes up 1%-5%of total plant dry matter(Marschner,2012).Due to the limited availability of N in soil,application of N fertilizers has been an important agronomic practice to increase crop yield.However,over-application of N fertilizers has caused pollution of N in soil,water and air.It  相似文献   

10.
11.
Root-to-shoot translocation and shoot homeostasis of potassium (K) determine nutrient balance, growth, and stress tolerance of vascular plants. To maintain the cation-anion balance, xylem loading of K+ in the roots relies on the concomitant loading of counteranions, like nitrate (NO3). However, the coregulation of these loading steps is unclear. Here, we show that the bidirectional, low-affinity Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) family member NPF7.3/NRT1.5 is important for the NO3-dependent K+ translocation in Arabidopsis (Arabidopsis thaliana). Lack of NPF7.3/NRT1.5 resulted in K deficiency in shoots under low NO3 nutrition, whereas the root elemental composition was unchanged. Gene expression data corroborated K deficiency in the nrt1.5-5 shoot, whereas the root responded with a differential expression of genes involved in cation-anion balance. A grafting experiment confirmed that the presence of NPF7.3/NRT1.5 in the root is a prerequisite for proper root-to-shoot translocation of K+ under low NO3 supply. Because the depolarization-activated Stelar K+ Outward Rectifier (SKOR) has previously been described as a major contributor for root-to-shoot translocation of K+ in Arabidopsis, we addressed the hypothesis that NPF7.3/NRT1.5-mediated NO3 translocation might affect xylem loading and root-to-shoot K+ translocation through SKOR. Indeed, growth of nrt1.5-5 and skor-2 single and double mutants under different K/NO3 regimes revealed that both proteins contribute to K+ translocation from root to shoot. SKOR activity dominates under high NO3 and low K+ supply, whereas NPF7.3/NRT1.5 is required under low NO3 availability. This study unravels nutritional conditions as a critical factor for the joint activity of SKOR and NPF7.3/NRT1.5 for shoot K homeostasis.The macronutrient potassium (K) is essential for plant growth and development because of its crucial roles in various cellular processes (i.e. regulation of enzyme activities), stabilization of protein synthesis, and neutralization of negative charges. In addition, it is a major component of the cation-anion balance and osmoregulation in plants, thereby influencing cellular turgor, xylem and phloem transport, pH homeostasis, and the setting of membrane potentials (Maathuis, 2009; Marschner, 2012; Sharma et al., 2013). K+ uptake and distribution in Arabidopsis (Arabidopsis thaliana) are accomplished by a total of 71 membrane proteins that have been assigned to five gene families: the Shaker and Tandem-Pore K+ channels (now also including the inward-rectifier K-like (Kir-like) channels), the K+ uptake permeases (KUP/HAK/KT), the K+ transporter (HKT) family, and the cation proton antiporters (CPA; Gierth and Mäser, 2007; Gomez-Porras et al., 2012; Sharma et al., 2013).Root xylem loading is a key step for the delivery of nutrients to the shoot (Poirier et al., 1991; Engels and Marschner, 1992a; Gaymard et al., 1998; Takano et al., 2002; Park et al., 2008). Root-to-shoot translocation of K+ is mediated by the voltage-dependent Shaker family K+ channel Stelar K+ Outward Rectifier (SKOR). The gene is primarily expressed in pericycle and root xylem parenchyma cells, and it is down-regulated upon K shortage and in response to treatments with the phytohormones abscisic acid, cytokinin, and auxin. Such gene expression changes are thought to control K+ secretion into the xylem sap and K+ reallocation through the phloem to adjust root K+ transport activity to K+ availability and shoot demand (Pilot et al., 2003). SKOR is activated upon membrane depolarization, and it is in a closed state when the driving force for K+ is inwardly directed. It elicits outward K+ currents, facilitating the release of the cation from the cells into the xylem. The voltage dependency of the channel is modulated by the external K+ concentration to minimize the risk of an undesired K+ influx under high K+ availability (Johansson et al., 2006). Root-to-shoot K+ transfer was strongly reduced in the knockout mutant skor-1, resulting in a decreased shoot K content, whereas the root K content remained unaffected (Gaymard et al., 1998).Root xylem loading is subject to the maintenance of a cation-anion balance, and nitrate (NO3) is the quantitatively most important anion counterbalancing xylem loading of K+ (Engels and Marschner, 1993). Members of the Nitrate Transporter1 (NRT1)/Peptide Transporter (PTR) transporter family (NPF) play a prominent role in NO3 uptake and allocation in Arabidopsis (summarized in Krouk et al., 2010; Wang et al., 2012; and Léran et al., 2014). Two of them have recently been reported to control xylem NO3 loading and unloading. The low-affinity, pH-dependent bidirectional NO3 transporter NPF7.3/NRT1.5 (subsequently termed NRT1.5) mediates NO3 efflux from pericycle cells to the xylem vessels, whereas the low-affinity influx protein NPF7.2/NRT1.8 removes NO3 from the xylem sap and transfers it into xylem parenchyma cells (Lin et al., 2008; Li et al., 2010; Chen et al., 2012). Accordingly, the expression of both genes is oppositely regulated under various stress conditions (Li et al., 2010). In nrt1.5 mutants, NRT1.8 expression is increased, which is thought to enhance NO3 reallocation to the root (Chen et al., 2012).The NRT1.5 gene is mainly expressed in root pericycle cells close to the xylem, and the protein localizes to the plasma membrane. In nrt1.5 mutants, less NO3 is transported from the root to the shoot, and the NO3 concentration in the xylem sap is reduced. However, root-to-shoot NO3 transport is not completely abolished in these mutants, indicating the existence of additional xylem-loading activities for NO3 (Lin et al., 2008; Wang et al., 2012). The recent observation that NPF6.3/NRT1.1/CHL1 and NPF6.2/NRT1.4 are also capable of mediating bidirectional NO3 transport in Xenopus laevis oocytes might indicate that more NPF family members are contributing to xylem loading with NO3 (Léran et al., 2013).Electrophysiological studies with NRT1.5-expressing X. laevis oocytes revealed that NO3 excited an inward current at pH 5.5, which would be expected for a proton-coupled nitrate transporter with a proton to nitrate ratio larger than one (Lin et al., 2008). The inward currents elicited by exposure to nitrate were pH dependent, and Lin et al. (2008) observed that NRT1.5 can also facilitate nitrate efflux when the oocytes were incubated at pH 7.4. Lin et al. (2008) concluded that NRT1.5 can transport nitrate in both directions, presumably through a proton-coupled mechanism. Interestingly, a K+ gradient was not sufficient to drive NRT1.5-mediated NO3 export. However, the determination of root and shoot cation concentrations in the nrt1.5-1 mutant revealed that the amount of K+ translocated to the shoot was reduced when NO3 but not NH4+ was supplied as the N source. Therefore, Lin et al. (2008) suggested a regulatory loop between NO3 and K+ at the xylem loading step.A close relationship between these two nutrients concerning uptake, translocation, recycling, and reduction (of NO3) has been described in physiological studies since the 1960s (e.g. Ben Zioni et al., 1971; Blevins et al., 1978; Barneix and Breteler, 1985), but only recently, common components in the NO3 and K+ uptake pathways were identified and led to the first ideas of how such a cross talk might be coordinated on the molecular level. The uptake activity of the K+ channel AKT1 as well as the affinity of the NO3 transporter NPF6.3/NRT1.1/CHL1 are both modulated by the activity of CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE23 (CIPK23), which itself is regulated by CALCINEURIN B-LIKE PROTEIN9 (CBL9) under both deficiencies (Xu et al., 2006; Ho et al., 2009). Yet, the details of this interaction in root K+ uptake, the (regulation of) xylem loading with K+ and NO3, and the involvement of SKOR and NRT1.5 in this process are unknown.In this study, we approached this problem by investigating the molecular and physiological responses of Arabidopsis wild-type (Columbia-0 [Col-0]), nrt1.5, and skor transfer DNA (T-DNA) insertion lines to varying NO3 and K+ regimes. The nrt1.5 mutant developed an early senescence phenotype under low NO3 nutrition, which could be attributed to a reduced K+ translocation to the shoot. The assessment of nrt1.5 and skor single- and double-knockout lines disclosed an interplay of the two proteins in the NO3-dependent control of shoot K homeostasis. The presented data indicate that SKOR mediates K+ root-to-shoot translocation under high NO3 and low K+ availability, whereas NRT1.5 is important for K+ translocation under low NO3 availability, irrespective of the K+ supply.  相似文献   

12.
该研究以马铃薯双单倍体‘DM’为材料,克隆到高亲和性硝态氮转运蛋白基因StNRT2.1的全长cDNA(JGI登录号PGSC0003DMT400002924),并对其进行表达模式和生物信息学分析,为深入探索StNRT2.1基因的生物学功能以及提高马铃薯对氮素的利用效率奠定理论基础。结果表明:(1)通过同源克隆与PCR扩增获得StNRT2.1基因cDNA全长片段,并构建pCEGFP-StNRT2.1表达载体;测序结果显示其实际所编码的蛋白质序列与数据库中目的基因蛋白质序列完全一致,表明成功克隆到StNRT2.1基因且未出现错义突变。(2)StNRT2.1基因位于马铃薯第11号染色体,cDNA序列全长1 593 bp,编码530个氨基酸,预测蛋白相对分子质量约为57.60 kD,理论等电点为9.36。(3)生物信息学分析显示,StNRT2.1由20种氨基酸组成,其中甘氨酸(Gly)所占比例最多,达到10.8%,并且主要由228个α-螺旋、27个β-折叠、87个延伸链和188个无规则卷曲构成;StNRT2.1存在功能保守结构MFS_1(PF07690)和12个跨膜螺旋结构域,且N端和C端均位于细胞膜内; StNRT2.1位于质膜上且不具有信号肽,可能为非分泌型膜蛋白。(4)以氮充足(7.5 mmol/L)水平作为对照,马铃薯幼苗经无氮(0 mmol/L)和低氮(0.75 mmol/L)处理3周后呈现出叶片发黄及植株矮化等明显表型差异。(5)qRT-PCR结果显示,在无氮条件下,马铃薯根组织中StNRT2.1基因表达量升高3.98倍,说明StNRT2.1可能为诱导型高亲和转运蛋白。  相似文献   

13.
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transporter,ABC transporter)基因家族在原核生物和真核生物中广泛存在,该家族蛋白能够利用ATP裂解产生的能量将多种底物转运到膜上,参与多种生物过程,如营养摄入、细胞解毒、脂质稳态、信号转导、病毒防御以及抗原呈递等。目前,鱼类中,只在斑马鱼、斑点叉尾鮰和鲤鱼等少数鱼类中对该基因家族进行了系统的研究,关于金鱼ABC转运蛋白基因家族的详细分析,未见报道。本研究中,我们利用三代结合二代测序技术构建的金鱼转录组参考基因集数据,鉴定出55个ABC转运蛋白基因,通过系统进化分析将它们分为8个亚家族(A^H)。即金鱼ABC转运蛋白基因是由10个ABCA、14个ABCB、13个ABCC、5个ABCD、1个ABCE、4个ABCF、7个ABCG和1个ABCH组成。同时,我们将金鱼与斑马鱼、斑点叉尾鮰和鲤鱼等物种ABC转运蛋白基因家族成员的数目进行比较分析,推测硬骨鱼类特异的第3次全基因复制(3R-WGD)和谱系特异的第4次全基因组复制(4R-WGD)对金鱼该基因家族成员数目的影响。本研究结果为金鱼ABC转运蛋白基因功能的研究提供了理论依据。  相似文献   

14.
Dehydrins (DHNs) define a complex group of stress inducible proteins characterized by the presence of one or more lysine-rich motifs. DHNs are present in multiple copies in the genome of plant species. Although genome-wide analysis of DHNs composition and chromosomal distribution has been conducted in herbaceous species, it remains unexplored in woody plants. Here, we report on the identification of ten genes encoding eleven putative DHN polypeptides in Populus. We document that DHN genes occur as duplicated blocks distributed over seven of the 19 poplar chromosomes likely as a result of segmental and tandem duplication events. Based on conserved motifs, poplar DHNs were assigned to four subgroups with the Kn subgroup being the most frequent. One putative DHN polypeptide (PtrDHN-10) with a SKS arrangement could originate from a recombination between SKn and KnS genes. In silico analysis of microarray data showed that in unstressed poplar, DHN genes are expressed in all vegetative tissues except for mature leaves. This exhaustive survey of DHN genes in poplar provides important information that will assist future studies on their functional role in poplar.  相似文献   

15.
The Neurospora crassa genome database was searched for sequence similarity to crnA, a nitrate transporter in Aspergillus nidulans. A 3.9-kb fragment (contig 3.416, subsequence 183190-187090) was cloned by PCR. The gene coding for this nitrate transporter was termed nit-10. The nit-10 gene specifies a predicted polypeptide containing 541 amino acids with a molecular mass of 57 kDa. In contrast to crnA, which is clustered together with niaD, encoding nitrate reductase, and niiA, encoding nitrite reductase, nit-10 is not linked to nit-3 (nitrate reductase), nit-6 (nitrite reductase), or to nit-2, nit-4 (both are positive regulators of nit-3), or nmr (negative regulator of nit-3) in Neurospora crassa. A nit-10 rip mutant failed to grow in the medium when nitrate (< 10 mM) was used as the sole nitrogen source, but grew similarly to wild type when nitrate concentration was 10 mM or higher. In addition, it showed strong sensitivity to cesium in the presence of nitrate and resistance to chlorate in the presence of alanine, proline, or hypoxanthine. The expression of nit-10 required nitrate induction and was subject to repression by nitrogen metabolites such as glutamine. Expression of nit-10 also required functional products of nit-2 and nit-4. The half-life of nit-10 mRNA was determined to be approximately 2.5 min.  相似文献   

16.
茶树硝酸盐转运蛋白基因的克隆和表达分析   总被引:1,自引:0,他引:1  
硝酸盐转运蛋白(NRT)是植物吸收和利用硝态氮的一种关键蛋白。运用RACE技术从茶树中扩增出NRT基因的cDNA,并利用实时荧光定量PCR检测了CsNRT基因在不同茶树器官与品种之间的差异表达。结果表明:CsNRT基因的cDNA全长2 061 bp,开放阅读框为1 818 bp,编码含由605个氨基酸组成的蛋白质,GenBank登录号为KJ160503,属于NRT2基因家族。CsNRT为组成型基因,对不同处理的水培茶苗进行定量表达分析显示,该基因在根、茎、叶中都有表达,其中在根部的表达水平最高,1.0 mmol·L-1的NO3-可诱导其表达量上升7.53倍。不同茶树品种中CsNRT基因的表达也有较大差异,‘龙井长叶’和‘凫早2号’的表达量较高,前者强烈响应0.5和1.0 mmol·L-1 NO3-的诱导,后者的响应浓度为1.0和2.0mmol·L-1,而‘舒茶早’在各浓度下的表达差异不明显。  相似文献   

17.
In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. Récital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO3 -) uptake under non-limiting NO3 - conditions, while following the expression of key genes involved in NO3 - uptake and assimilation. We found that post-flowering NO3 - uptake was strongly influenced by plant N status at flowering during the first 300–400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO3 - correlated well with the expression of the gene TaNRT2.1, coding for a root NO3 - transporter, which seems to play a major role in post-flowering NO3 - uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat.  相似文献   

18.
硝酸盐转运蛋白(nitrate transporter,NRT)是植物识别、吸收和转运硝酸盐的关键蛋白,对促进作物根系发育、提高产量具有重要作用。通过筛选水生植物,利用NRT蛋白的保守区设计简并引物,并通过PCR和RACE技术,首次从矮珍珠(Glossostigma elatinoides)中克隆得到GeNRT2.1基因。进化分析结果表明,GeNRT2.1与烟草NRT2.1在进化关系上距离最近。qRT-PCR结果表明,GeNRT2.1在矮珍珠根中表达量最高,其次是叶和茎,此外,低浓度硝酸盐(0.5 mmol·L-1)处理后,GeNRT2.1在根、叶、茎中的表达量分别是高浓度硝酸(2 mmol·L-1)处理后的1.89、1.93和2.07倍。功能互补实验发现,GeNRT2.1能使缺陷型酵母Δynr恢复生长,具有硝酸盐转运蛋白的功能。通过丰富NRT基因资源,以期为培育氮肥高效利用转基因作物,发展绿色农业,保证我国的粮食安全和环境安全提供理论依据。  相似文献   

19.
The Synechocystis Slr0642 protein and its plastidial Arabidopsis (Arabidopsis thaliana) ortholog At2g32040 belong to the folate-biopterin transporter (FBT) family within the major facilitator superfamily. Both proteins transport folates when expressed in Escherichia coli. Because the structural requirements for transport activity are not known for any FBT protein, we applied mutational analysis to identify residues that are critical to transport and interpreted the results using a comparative structural model based on E. coli lactose permease. Folate transport was assessed via the growth of an E. coli pabA abgT strain, which cannot synthesize or take up folates or p-aminobenzoylglutamate. In total, 47 residues were replaced with Cys or Ala. Mutations at 22 positions abolished folate uptake without affecting Slr0642 expression in membranes, whereas other mutations had no effect. Residues important for function mostly line the predicted central cavity and are concentrated in the core α-helices H1, H4, H7, and H10. The essential residue locations are consistent with a folate-binding site lying roughly equidistant from both faces of the transporter. Arabidopsis has eight FBT proteins besides At2g32040, often lacking conserved critical residues. When six of these proteins were expressed in E. coli or in Leishmania folate or pterin transporter mutants, none showed evidence of folate or pterin transport activity, and only At2g32040 was isolated by functional screening of Arabidopsis cDNA libraries in E. coli. Such negative data could reflect roles in transport of other substrates. These studies provide the first insights into the native structure and catalytic mechanism of FBT family carriers.  相似文献   

20.
王华  张正线 《遗传学报》1995,22(6):413-423
葡萄糖转运蛋白是一个在结构上相似功能上不同的多基因家族(GLUT1-GLUT5)。由于这一组蛋白和体内的葡萄糖利用有关,因此被认为是糖尿病胰岛素抵抗(抗性)的一个候选基因。本文比较了不同种生物这一基因家族的氨基酸和核苷酸顺序;推测了亲水性和疏水性分布;计算了蛋白质和核苷酸的进化距离,并在此基础上构建了分子进化树。研究表明:这一基因家族具有高度的同源性、极为相似的亲水性和疏水性分布以及结构的对称性。提示这一基因家族起源于一个共同的祖先并可能通过基因的重复而形成。这一进化机制可能有利于氨基酸结构的稳定及抵抗突变的作用。由于邻元法构建的进化树其分支长度存在差异,提示在这一基因家族的进化过程中,各分支上的进化速率并不相同。蛋白质进化距离和核苷酸进化距离所构建进化树的差异提示了在基因组中可能存在隐匿替换。两种方法构建的进化树都提示了GLUT1、3、4在结构和功能上要更为保守。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号