首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

2.
GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 β2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.  相似文献   

3.
After a definition of the receptor mosaic (RM, high order heteromer or homomer) concept, this study analyzes some relevant theoretical aspects related to receptor-receptor interactions (RRIs). In particular, the possible influence of the plasma membrane microdomain on RM integrative functions are discussed. Furthermore, a possible mathematical approach may identify the RM topologies [i.e., the spatial arrangements the receptors (tesserae of the mosaic) can assume within the RM assembly]. Finally, data are presented on homocysteine possible biasing action on the well-characterized heterodimer/receptor mosaic formed by adenosine A2A and dopamine D2 receptors. We discuss how these findings can lead to a new possible approach for developing drugs for the treatment of certain neuropsychiatric disorders.  相似文献   

4.
5.
6.
We simulated synaptic transmission and modified a simple model of long-term potentiation and long-term depression in order to describe the long-term plasticity-related changes in cerebellar mossy fiber–granule cell synapses. In our model, protein autophosphorylation, leading to the maintenance of long-term plasticity, is controlled by Ca2+ entry through the NMDA receptor channels. The observed nonlinearity in the development of long-term changes of EPSP in granule cells is explained by the difference in the rate constants of two independent autocatalytic processes.  相似文献   

7.
Sigma-1 receptor (Sig-1R) is an integral membrane protein predominantly expressed in the endoplasmic reticulum. Sig-1R demonstrates a high affinity to various synthetic compounds including well-known psychotherapeutic drugs in the central nervous system (CNS). For that, it is considered as an alternative target for psychotherapeutic drugs. On the cellular level, when Sig-1R is activated, it is known to play a role in neuroprotection and neurite elongation. These effects are suggested to be mediated by its ligand-operated molecular chaperone activity, and/or upregulation of various Ca2+ signaling. In addition, recent studies show that Sig-1R activation induces neurite outgrowth via neurotrophin signaling. Here, we tested the hypothesis that Sig-1R activation promotes neurite elongation through activation of tropomyosin receptor kinase (Trk), a family of neurotrophin receptors. We found that 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE-084), a selective Sig-1R agonist, significantly promoted neurite outgrowth, and K252a, a Trk inhibitor, attenuated Sig-1R-mediated neurite elongation in cerebellar granule neurons (CGNs). Moreover, we revealed that Sig-1R interacts with TrkB, and PRE-084 treatment enhances phosphorylation of Y515, but not Y706. Thus, our results indicate that Sig-1R activation promotes neurite outgrowth in CGNs through Y515 phosphorylation of TrkB.  相似文献   

8.
Abstract: The developmental properties of primary rat cerebellar granule cells have been characterised with respect to their expression of GABAA receptor subtypes using both an immunological approach and radioligand binding assays. At day 1 in culture, the GABAA receptor α1 subunit was detectable in immunoblots and increased in level up to day 9. The GABAA receptor α6 subunit was not detectable at day 1; however, at days 3–5, a specific Mr 58,000 anti-α6 1–16 Cys immunoreactive species was present which further increased in level up to 9 days in culture. Similar qualitative results were obtained for the expression of the GABAA receptor α6 subunit in age-matched rat cerebellar membranes. In parallel studies, it was found that although there was an overall increase in [3H]Ro 15–4513 binding sites with days in culture, the relative contributions of diazepam-sensitive and diazepam-in-sensitive [3H]Ro 15–4513 binding changed. A time-dependent enrichment of the diazepam-insensitive binding site up to a maximum of 74% of total [3H]Ro 15–4513 sites was found. This was concomitant with the appearance of the GABAA receptor α6 subunit. These results are in agreement with the pharmacology described for α6βγ2 cloned receptors. They suggest a developmentally regulated expression of the GABAA receptor α6 subunit gene at a time that is correlated in vivo with establishment of neuronal connections.  相似文献   

9.
Abstract: Exposure of cerebellar granule cells to NMDA in culture at 5 days in vitro, when cells are not yet vulnerable to NMDA, evoked a pronounced reduction in NMDA receptor activity, measured by NMDA-induced 45Ca2+ influx, and counteracted the normal developmental increase in NMDA receptors. The effect was concentration and time dependent, the half-maximal effect being reached at about 45 µM and by 4–5 h. The decrease in NMDA receptor function was accompanied by a significant reduction in the protein level of the obligatory NMDA receptor subunit (NR) NR1. Both parameters remained at a low level as long as the agonist was present. However, receptor down-regulation was reversible, as receptor protein levels and NMDA responses were restored to control values upon NMDA removal, this process requiring protein synthesis. NMDA treatment also elicited a decrease in NR1, NR2A, and NR2B subunit messenger RNA (mRNA) levels. However, in comparison with NMDA receptor proteins, the decrease was faster, and NMDA receptor mRNA content recovered to control levels within 24 h in spite of the presence of NMDA. Concerning the mechanisms of agonist-induced regulation of NMDA receptor expression, it seems that protein kinase C-mediated protein phosphorylation is not involved, whereas inhibition of Ca2+/calmodulin-dependent kinase II/IV by KN-62 does depress NMDA receptor expression even in the absence of NMDA.  相似文献   

10.
During postnatal development, immature granule cells (excitatory interneurons) exhibit tangential migration in the external granular layer, and then radial migration in the molecular layer and the Purkinje cell layer to reach the internal granular layer of the cerebellar cortex. Default in migratory processes induces either cell death or misplacement of the neurons, leading to deficits in diverse cerebellar functions. Centripetal granule cell migration involves several mechanisms, such as chemotaxis and extracellular matrix degradation, to guide the cells towards their final position, but the factors that regulate cell migration in each cortical layer are only partially known. In our method, acute cerebellar slices are prepared from P10 rats, granule cells are labeled with a fluorescent cytoplasmic marker and tissues are cultured on membrane inserts from 4 to 10 hr before starting real-time monitoring of cell migration by confocal macroscopy at 37 °C in the presence of CO2. During their migration in the different cortical layers of the cerebellum, granule cells can be exposed to neuropeptide agonists or antagonists, protease inhibitors, blockers of intracellular effectors or even toxic substances such as alcohol or methylmercury to investigate their possible role in the regulation of neuronal migration.  相似文献   

11.
The glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulated a rapid, extracellular Ca(2+)-dependent conversion of [3H]arginine to [3H]citrulline in primary cultures of cerebellar granule cells, indicating receptor-mediated activation of nitric oxide (NO) synthase. The NMDA-induced formation of [3H]citrulline reached a plateau within 10 min. Subsequent addition of unlabeled L-arginine resulted in the disappearance of 3H from the citrulline pool, indicating a persistent activation of NO synthase after NMDA receptor stimulation. Glutamate, NMDA, and kainate, but not quisqualate, stimulated both the conversion of [3H]arginine to [3H]citrulline and cyclic GMP accumulation in a dose-dependent manner. Glutamate and NMDA showed similar potencies for the stimulation of [3H]citrulline formation and cyclic GMP synthesis, respectively, whereas kainate was more potent at inducing cyclic GMP accumulation than at stimulating [3H]citrulline formation. Both the [3H]arginine to [3H]citrulline conversion and cyclic GMP synthesis stimulated by NMDA were inhibited by the NMDA receptor antagonist MK-801 and by the inhibitors of NO synthase, NG-monomethyl-L-arginine (MeArg) and NG-nitro-L-arginine (NOArg). However, MeArg, in contrast to NOArg, also potently inhibited [3H]arginine uptake. Kainate (300 microM) stimulated 45Ca2+ influx to the same extent as 100 microM NMDA, but stimulated [3H]citrulline formation to a much lesser extent, which suggests that NO synthase is localized in subcellular compartments where the Ca2+ concentration is regulated mainly by the NMDA receptor.  相似文献   

12.
Amino acid release studies were performed by an HPLC procedure using differentiated rat cerebellar granule cell cultures. Kainic acid (KA; 50 microM) caused an increase (about threefold) in the release of endogenous glutamate and a lesser, but statistically significant, increase in the release of glutamine, glycine, threonine, taurine, and alanine. Quisqualic acid (QA) and, to a lesser degree, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (both 50 microM) enhanced the release of the following amino acids in the order glutamate greater than aspartate greater than or equal to taurine, whereas the release of other amino acids was either unaffected or affected in a statistically nonsignificant way. The release of glutamate induced by KA was partially (43%) Ca2+ dependent. The other release-inducing effects of KA and QA were not Ca2+ dependent. In all cases, the evoked release could be prevented by the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 6-cyano-2,3-hydroxy-7-nitroquinoxaline, and thus appeared to be receptor mediated. NMDA (5 and 50 microM) had no release-inducing activity. The KA-, QA-, and AMPA-evoked release of newly synthesized [3H]glutamate and [3H]aspartate (formed in the cells exposed to [3H]glutamine) was very similar to the evoked release of endogenous glutamate and aspartate. On the other hand, the release of preloaded D-[3H]aspartate (purified by HPLC in the various fractions analyzed, before radioactivity determination) induced by 50 microM KA was twice as high as that of endogenous glutamate. In the case of high [K+] depolarization, in contrast, the release of preloaded D-[3H]aspartate was approximately 30% lower than that of endogenous glutamate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.

Background

During postnatal murine and rodent cerebellar development, cerebellar granule precursors (CGP) gradually stop proliferating as they differentiate after migration to the internal granule layer (IGL). Molecular events that govern this program remain to be fully elucidated. GPR3 belongs to a family of Gs-linked receptors that activate cyclic AMP and are abundantly expressed in the adult brain.

Methodology/Principal Findings

To investigate the role of this orphan receptor in CGP differentiation, we determined that exogenous GPR3 expression in rat cerebellar granule neurons partially antagonized the proliferative effect of Sonic hedgehog (Shh), while endogenous GPR3 inhibition by siRNA stimulated Shh-induced CGP proliferation. In addition, exogenous GPR3 expression in CGPs correlated with increased p27/kip expression, while GPR3 knock-down led to a decrease in p27/kip expression. In wild-type mice, GPR3 expression increased postnatally and its expression was concentrated in the internal granular layer (IGL). In GPR3 −/− mice, the IGL was widened with increased proliferation of CGPs, as measured by bromodeoxyuridine incorporation. Cell cycle kinetics of GPR3-transfected medulloblastoma cells revealed a G0/G1 block, consistent with cell cycle exit.

Conclusions/Significance

These results thus indicate that GPR3 is a novel antiproliferative mediator of CGPs in the postnatal development of murine cerebellum.  相似文献   

14.
Cultured cerebellar granule cells deprived of depolarizing concentrations of KCl and serum die by programmed cell death. Recently, it was shown that serum removal by itself can lead to oxidative stress and DNA fragmentation in these cells. We have modified the protocol which initiates cell death in such a way that only the effect of KCl withdrawal-induced cell death was observed. We have performed a series of experiments to correlate the structural and biochemical changes in this process of cell death. Significant morphological alterations occur in cell bodies and neurites during a 48-hour period of KCl removal. Cell viability dropped to 53%, 34% or 10% of control levels, respectively, as a result of 1-, 2-, or 3-day KCl removal. A series of experiments was conducted to determine the change of total protein level, protein synthesis rate, RNA synthesis rate, and mitochondrial activity during the first 48 hours of KCl removal. These studies not only provide a picture correlating the morphological and biochemical changes in the process of programmed cell death, but also serve as a reference for future studies of this complex phenomenon.  相似文献   

15.
Abstract: The neuronal effects of the metabotropic glutamate receptor agonist (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid have been studied in cultured rat cerebellar granule cells, and compared with those of the endogenous excitotoxin glutamate, and the dietary excitotoxin β- N -methylamino- l -alanine. Glutamate, β- N -methylamino- l -alanine, and (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid all caused concentration-dependent cerebellar granule cell death over a 24-h exposure period. The metabotropic antagonist ( RS )-α-methyl-4-carboxyphenylglycine reduced glutamate-, β- N -methylamino- l -alanine-, and (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid-induced death by 50, 37, and 90%, respectively. (1 S ,3 R )-Aminocyclopentane-1,3-dicarboxylic acid-induced death was unaffected by the group I antagonist ( RS )-1-aminoindan-1,5-dicarboxylic acid, increased by the group II antagonist ethylglutamic acid, and markedly decreased by the group III antagonist ( RS )-α-methylserine- O -phosphate. Neither (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid nor the group I agonist ( RS )-3,5-dihydroxyphenylglycine caused an increase in intracellular free calcium levels. The group III agonist l -(+)-2-amino-4-phosphonobutyric acid also induced concentration-dependent cerebellar granule cell death, and so it was suggested that the group III metabotropic glutamate receptors were responsible for (1 S ,3 R )-aminocyclopentane-1,3-dicarboxylic acid-induced death. Blocking these receptors with ( RS )-α-methylserine- O -phosphate also prevented a proportion of glutamate- and β- N -methylamino- l -alanine-induced death.  相似文献   

16.
17.
Abstract: Metabotropic glutamate receptor (type 1; mGluR1 ) is expressed predominantly in the hippocampus and the cerebellum. Using cultured cerebellar granule cells, we investigated the regulation of the mGluR1 mRNA expression. Levels of mGluR1 mRNA were decreased to less than half by high potassium stimulation and by glutamate and quisqualate. Although these glutamate receptor agonists tested are also known to cause neuronal cell death in culture, the effect of cell death cannot explain the observed reduction in mGluR1 mRNA because of the following reasons: (a) antagonists of N -methyl-D-aspartate and non- N -methyl-D-aspartate receptors inhibited cell death, but not the reduction of the level of mGluR1 mRNA; (b) mGluR1 mRNA returned to its initial level 48 h after the agonist application; and (c) the mRNA level of one of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors (GluR1) was not altered by these conditions. Therefore, we conclude that the glutamate or quisqualate stimulation can specifically inhibit the expression of mGluR1 mRNA. The dose response of quisqualate for the reduction in mGluR1 mRNA is consistent with that for inositol phosphate formation stimulated through the cloned mGluR1 . The mRNA reduction did not require extracellular calcium. Desensitization of mGluR1 with phorbol ester abolished the mRNA reduction. These results suggest that the reduction in mGluR1 mRNA is mediated by the activation of the metabotropic receptor itself.  相似文献   

18.
Cultured cerebellar granule neurons (CGC) increase survival in a medium containing 25 mM KCl (K25), and they die apoptotically when cultures are treated with staurosporine (St) or are transferred to a 5-mM KCl containing medium (K5). Apoptotic CGC show nuclear condensation and caspase-3 activation. Cell death induced by these conditions was partially prevented when cultures were maintained under alkaline conditions, which also induced a marked reduction of the caspase-3 activation. The acidification of the medium further increased cell death induced by both stimuli. Cultures transferred to K5 suffered an immediate intracellular alkalinization that remained constant during the time K5 was present. In contrast, St did not modify cytosolic pH at any of the evaluated times. On the other hand, DIDS, furosemide, and bumetanide prevented CGC death induced by K5 and St. Other drugs such as amiloride, EIPA, tamoxifen, NEM, or NPPB did not modify cell death induced by these conditions. Both DIDS and bumetanide markedly inhibited the processing and activation of caspase-3, and DIDS prevented the nuclear condensation induced by K5 and St. These findings suggest that pH is a condition that could contribute to the modulation of cell death induced by some stimuli and that other ions, such as potassium, could have a role in the initial phase of apoptotic death of CGC.  相似文献   

19.
Glutamate-induced neurotoxicity and calpain activity were studied in primary cultures of rat cerebellar granule neurons and glial cells. Calpain activation, as monitored by quantitative immunoblotting of spectrin, required micromolar concentrations of Ca2+ in neuronal homogenates (calpain I) and millimolar Ca2+ concentrations in glial homogenates (calpain II). Glutamate-induced toxicity and calpain activation were observed in neuronal, but not in glial, cultures. In neurons, calpain I activation by glutamate was dose-dependent and persisted after withdrawal of neurotoxic doses of glutamate. Natural (GM1) and semisynthetic (LIGA4) gangliosides or the glutamate receptor blocker MK-801 prevented calpain I activation and delayed neuronal death elicited by glutamate. GM1 and LIGA4 had no effect on calpain I activity in neuronal homogenates, however. Furthermore, two calpain I inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal) prevented glutamate-induced spectrin degradation, but failed to affect glutamate neurotoxicity. These results thus suggest that glutamate-induced neurotoxicity is independent of calpain I activation.  相似文献   

20.
Modulation of the GABA type A receptor (GABAAR) function by cholesterol and other steroids is documented at the functional level, yet its structural basis is largely unknown. Current data on structurally related modulators suggest that cholesterol binds to subunit interfaces between transmembrane domains of the GABAAR. We construct homology models of a human GABAAR based on the structure of the glutamate-gated chloride channel GluCl of Caenorhabditis elegans. The models show the possibility of previously unreported disulfide bridges linking the M1 and M3 transmembrane helices in the α and γ subunits. We discuss the biological relevance of such disulfide bridges. Using our models, we investigate cholesterol binding to intersubunit cavities of the GABAAR transmembrane domain. We find that very similar binding modes are predicted independently by three approaches: analogy with ivermectin in the GluCl crystal structure, automated docking by AutoDock, and spontaneous rebinding events in unbiased molecular dynamics simulations. Taken together, the models and atomistic simulations suggest a somewhat flexible binding mode, with several possible orientations. Finally, we explore the possibility that cholesterol promotes pore opening through a wedge mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号