首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation.  相似文献   

2.
The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence.  相似文献   

3.
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.  相似文献   

4.
Popa A  Pager CT  Dutch RE 《Biochemistry》2011,50(6):945-952
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.  相似文献   

5.
As we have shown previously, release of measles virus (MV) from polarized epithelial cells is not determined by the viral envelope proteins H and F. Although virus budding is restricted to the apical surfaces, both proteins were abundantly expressed on the basolateral surface of Madin-Darby canine kidney cells. In this report, we provide evidence that the basolateral expression of the viral proteins is of biological importance for the MV infection of polarized epithelial cells. We demonstrate that both MV glycoproteins possess a basolateral targeting signal that is dependent upon the unique tyrosine in the cytoplasmic tails. These tyrosines are shown to be also part of an endocytosis signal. In MV-infected cells, internalization of the glycoproteins was not observed, indicating that recognition of the endocytosis signals is disturbed by viral factors. In contrast, basolateral transport was not substantially hindered, resulting in efficient cell-to-cell fusion of polarized Madin-Darby canine kidney cells. Thus, recognition of the signals for endocytosis and polarized transport is differently regulated in infected cells. Mutation of the basolateral sorting signal in one of the MV glycoproteins prevented fusion of polarized cells. These results suggest that basolateral expression of the MV glycoproteins favors virus spread in epithelia.  相似文献   

6.
新城疫病毒ZJ1毒株是近年来在我国水禽中流行并能引起水禽严重发病和死亡的强毒株,其F蛋白裂解位点有多个碱性氨基酸分布。将该毒株F蛋白裂解位点的112、115和117位碱性氨基酸突变成弱毒株特征的非碱性氨基酸,构建了重组表达质粒pCI-FT。分别将突变前后的F蛋白与该毒株的HN蛋白在COS-1细胞共表达,表明突变前后的F蛋白均有融合活性;分别将突变前后的F蛋白与该毒株的HN蛋白在CEF细胞共表达,表明突变后F蛋白被裂解的活性大大降低。以上研究为下一步在全长cDNA克隆水平上对F蛋白裂解位点氨基酸序列进行相应突变,研究毒力相关因素以及构建毒力致弱疫苗株等奠定基础。  相似文献   

7.
P M Irusta  D DiMaio 《The EMBO journal》1998,17(23):6912-6923
Platelet-derived growth factor beta receptor (PDGFbetaR) is a transmembrane receptor tyrosine kinase involved in a variety of cellular functions. We have generated a constitutively activated murine PDGFbetaR containing a valine to alanine substitution at residue 536, located in the cytoplasmic juxtamembrane domain. When this mutant receptor (PR-V536A) was expressed in Ba/F3 cells, it allowed the cells to survive and proliferate in the absence of IL-3 or PDGF, and tyrosine phosphorylation of PR-V536A was increased markedly compared with that of the wild-type PDGFbetaR in the absence of ligand and similar to that observed in ligand-activated PDGFbetaR. PR-V536A displayed increased tyrosine kinase activity in vitro toward an exogenous substrate, and the tyrosine kinase activity of the receptor was required for the constitutive activation of the mutant. This valine to alanine substitution also activated a PDGFbetaR mutant unable to bind PDGF. Alanine substitutions at positions homologous to V536 of the murine PDGFbetaR also activated other members of the PDGF receptor subfamily. The amino acid sequence of this region revealed a strong similarity to WW domains present in other signal transduction proteins. Furthermore, GST fusion proteins containing the juxtamembrane region of the PDGFR specifically associated with peptides containing the WW domain consensus recognition sequence PPXY. The results suggest that the cytoplasmic juxtamembrane domain plays a role in the regulation of receptor activity and function, perhaps by participating in protein-protein interactions.  相似文献   

8.
The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out.  相似文献   

9.
The highly conserved LWYIK motif located immediately proximal to the membrane-spanning domain of the gp41 transmembrane protein of human immunodeficiency virus type 1 has been proposed as being important for the surface envelope (Env) glycoprotein's association with lipid rafts and gp41-mediated membrane fusion. Here we employed substitution and deletion mutagenesis to understand the role of this motif in the virus life cycle. None of the mutants examined affected the synthesis, precursor processing, CD4 binding, oligomerization, or cell surface expression of the Env, nor did they alter Env incorporation into the virus. All of the mutants, particularly the ΔYI, ΔIK, and ΔLWYIK mutants, in which the indicated residues were deleted, exhibited greatly reduced one-cycle viral replication and the Env trans-complementation ability. All of these deletion mutant proteins were still localized in the lipid rafts. With the exception of the Trp-to-Ala (WA) mutant, which exhibited reduced viral infectivity albeit with normal membrane fusion, all mutants displayed loss of some or almost all of the membrane fusion ability. Although these deletion mutants partially inhibited in trans wild-type (WT) Env-mediated fusion, they were more effective in dominantly interfering with WT Env-mediated viral entry when coexpressed with the WT Env, implying a role of this motif in postfusion events as well. Both T20 and L43L peptides derived from the two gp41 extracellular C- and N-terminal α-helical heptad repeats, respectively, inhibited WT and ΔLWYIK Env-mediated viral entry with comparable efficacies. Biotin-tagged T20 effectively captured both the fusion-active, prehairpin intermediates of WT and mutant gp41 upon CD4 activation. Env without the deletion of the LWYIK motif still effectively mediated lipid mixing but inhibited content mixing. Our study demonstrates that the immediate membrane-proximal LWYIK motif acts as a unique and distinct determinant located in the gp41 C-terminal ectodomain by promoting enlargement of fusion pores and postfusion activities.  相似文献   

10.
Ebola viruses contain a single glycoprotein (GP) spike, which functions as a receptor binding and membrane fusion protein. It contains a highly conserved hydrophobic region (amino acids 524 to 539) located 24 amino acids downstream of the N terminus of the Ebola virus GP2 subunit. Comparison of this region with the structural features of the transmembrane subunit of avian retroviral GPs suggests that the conserved Ebola virus hydrophobic region may, in fact, serve as the fusion peptide. To test this hypothesis directly, we introduced conservative (alanine) and nonconservative (arginine) amino acid substitutions at eight positions in this region of the GP2 molecule. The effects of these mutations were deduced from the ability of the Ebola virus GP to complement the infectivity of a vesicular stomatitis virus (VSV) lacking the receptor-binding G protein. Some mutations, such as Ile-to-Arg substitutions at positions 532 (I532R), F535R, G536A, and P537R, almost completely abolished the ability of the GP to support VSV infectivity without affecting the transport of GP to the cell surface and its incorporation into virions or the production of virus particles. Other mutations, such as G528R, L529A, L529R, I532A, and F535A, reduced the infectivity of the VSV-Ebola virus pseudotypes by at least one-half. These findings, together with previous reports of liposome association with a peptide corresponding to positions 524 to 539 in the GP molecule, offer compelling support for a fusion peptide role for the conserved hydrophobic region in the Ebola virus GP.  相似文献   

11.
Newcastle disease virus (NDV)-induced membrane fusion requires formation of a complex between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins. Substitutions for NDV HN stalk residues A89, L90, and L94 block fusion by modulating formation of the HN-F complex. Here, we demonstrate that a nearby L97A substitution, though previously shown to block fusion, allows efficient HN-F complex formation and likely acts by preventing changes in the HN stalk required for triggering of the bound F protein.  相似文献   

12.
Protein phosphorylation sites act to transduce signals into changes in enzymatic activity, representing a point of interaction within a regulatory pathway. The amino acid sequence surrounding a phosphorylation site may well have several functions, including recognition by an appropriate kinase. By generating random mutations in its immediate vicinity, we have examined the sequence requirements of a regulatory tyrosine phosphorylation site, Tyr527, in the proto-oncogene product, p60c-src. The transforming and kinase activities of p60c-src are repressed by phosphorylation of Tyr527. Mutations were made around Tyr527 without changing Tyr527 or the kinase domain. Twenty-nine mutants were sequenced and classified as transforming or nontransforming for Rat-2 cells. Nontransforming mutants contained a surprising variety of COOH-terminal mutations, although acidic residues were present at positions 518 and 524 in all nontransforming mutants. Transforming mutants that contained single-residue changes at Asp518 and Ser522 demonstrated the importance of these residues. Other transforming mutants contained two or more substitutions, but the results are most simply explained if residues Glu524 and Thr523 are also important for normal regulation. Transforming mutations reduced the phosphorylation of Tyr527. We conclude that only a few of the residues in the COOH terminus other than Tyr527 are required to ensure normal phosphorylation and repression of activity in fibroblasts. Other residues may have been conserved during evolution to permit normal function and regulation in other cell types.  相似文献   

13.
Naim HY  Ehler E  Billeter MA 《The EMBO journal》2000,19(14):3576-3585
In polarized epithelial cells measles virus (MV) is predominantly released at the apical cell surface, irrespective of the sorting of its two envelope glycoproteins F and H. It has been reported previously that the viral matrix (M) protein modulates the fusogenic capacity of the viral envelope glycoproteins. Here, extant MV mutants and chimeras were used to determine the role of M protein in the transport of viral glycoproteins and release of progeny virions in polarized epithelial CaCo2 cells. In the absence of M, envelope glycoproteins are sorted to the basolateral surface, suggesting that they possess intrinsic basolateral sorting signals. However, interactions of M with the glycoprotein cytoplasmic tails allow M-glycoprotein co-segregation to the apical surface, suggesting a vectorial function of M to retarget the glycoproteins for apical virion release. Whereas this may allow virus airway shedding, the intrinsic sorting of the glycoproteins to the basolateral surface may account for systemic host infection by allowing efficient cell-cell fusion.  相似文献   

14.
M蛋白是新城疫病毒(Newcastle disease virus,NDV)基因组编码的一种非糖基化膜相关蛋白,主要位于病毒囊膜内表面,构成病毒囊膜与核衣壳连接的支架。研究表明,M蛋白是一种细胞核-细胞质穿梭蛋白,在抑制细胞基因转录和蛋白质合成以及协助病毒粒子组装和出芽方面发挥了重要作用。目前,国内外对NDV毒力和复制的关系研究主要集中在病毒的F、HN和V蛋白以及RNP复合体,但是近年来研究人员利用反向遗传操作技术研究发现M蛋白与NDV毒力和复制也存在一定的联系。因此,本文主要对NDV M蛋白的结构特征、M蛋白对NDV毒力和复制的影响及其作用机制进行综述,以期为NDV M蛋白的功能研究提供新的理论参考。  相似文献   

15.
We introduced two mutations into the carboxy-terminal regulatory region of chicken pp60c-src. One, F527, replaces tyrosine 527 with phenylalanine. The other, Am517, produces a truncated pp60c-src protein lacking the 17 carboxy-terminal amino acids. Both mutant proteins were phosphorylated at tyrosine 416 in vivo. The specific activity of the Am517 mutant protein kinase was similar to that of wild-type pp60c-src whereas that of the F527 mutant was 5- to 10-fold higher. Both mutant c-src genes induced focus formation on NIH 3T3 cells, but the foci appeared at lower frequency, and were smaller than foci induced by polyoma middle tumor antigen (mT). The wild-type or F527 pp60c-src formed a complex with mT, whereas the Am517 pp60c-src did not. The results suggest that one, inability to phosphorylate tyrosine 527 increases pp60c-src protein kinase activity and transforming ability; two, transformation by mT involves other events besides lack of phosphorylation at tyrosine 527 of pp60c-src; three, activation of the pp60c-src protein kinase may not be required for transformation by the Am517 mutant; and four, the carboxyl terminus of pp60c-src appears to be required for association with mT.  相似文献   

16.
The catalytic subunit of herpes simplex virus 1 DNA polymerase (HSV-1 Pol) has been extensively studied; however, its full complement of functional domains has yet to be characterized. A crystal structure has revealed a previously uncharacterized pre-NH2-terminal domain (residues 1 to 140) within HSV-1 Pol. Due to the conservation of the pre-NH2-terminal domain within the herpesvirus Pol family and its location in the crystal structure, we hypothesized that this domain provides an important function during viral replication in the infected cell distinct from 5′-3′ polymerase activity. We identified three pre-NH2-terminal Pol mutants that exhibited 5′-3′ polymerase activity indistinguishable from that of wild-type Pol in vitro: deletion mutants PolΔN43 and PolΔN52 that lack the extreme N-terminal 42 and 51 residues, respectively, and mutant PolA6, in which a conserved motif at residues 44 to 49 was replaced with alanines. We constructed the corresponding pol mutant viruses and found that the polΔN43 mutant displayed replication kinetics similar to those of wild-type virus, while polΔN52 and polA6 mutant virus infection resulted in an 8-fold defect in viral yield compared to that achieved with wild type and their respective rescued derivative viruses. Additionally, both polΔN52 and polA6 viruses exhibited defects in viral DNA synthesis that correlated with the observed reduction in viral yield. These results strongly indicate that the conserved motif within the pre-NH2-terminal domain is important for viral DNA synthesis and production of infectious virus and indicate a functional role for this domain.  相似文献   

17.
Gravel KA  Morrison TG 《Journal of virology》2003,77(20):11040-11049
The activation of most paramyxovirus fusion proteins (F proteins) requires not only cleavage of F(0) to F(1) and F(2) but also coexpression of the homologous attachment protein, hemagglutinin-neuraminidase (HN) or hemagglutinin (H). The type specificity requirement for HN or H protein coexpression strongly suggests that an interaction between HN and F proteins is required for fusion, and studies of chimeric HN proteins have implicated the membrane-proximal ectodomain in this interaction. Using biotin-labeled peptides with sequences of the Newcastle disease virus (NDV) F protein heptad repeat 2 (HR2) domain, we detected a specific interaction with amino acids 124 to 152 from the NDV HN protein. Biotin-labeled HR2 peptides bound to glutathione S-transferase (GST) fusion proteins containing these HN protein sequences but not to GST or to GST containing HN protein sequences corresponding to amino acids 49 to 118. To verify the functional significance of the interaction, two point mutations in the HN protein gene, I133L and L140A, were made individually by site-specific mutagenesis to produce two mutant proteins. These mutations inhibited the fusion promotion activities of the proteins without significantly affecting their surface expression, attachment activities, or neuraminidase activities. Furthermore, these changes in the sequence of amino acids 124 to 152 in the GST-HN fusion protein that bound HR2 peptides affected the binding of the peptides. These results are consistent with the hypothesis that HN protein binds to the F protein HR2 domain, an interaction important for the fusion promotion activity of the HN protein.  相似文献   

18.
A method was developed to select host cell mutants which did not permit the replication of Newcastle disease virus (NDV), and 14 isolates of NDV-nonpermissive mutants of mouse FM3A cells were obtained. All these isolates were judged to be deficient in NDV receptors, since their ability to adsorb 3H-labeled NDV virions was markedly decreased. They were tested for genetic complementation in pairs by cell fusion and shown to fall into a single recessive complementation group, which was designated as Had-1. Vesicular stomatitis virus was able to replicate in this mutant to produce infectious progeny, but the glycoprotein of the released virion was abnormal in size, suggesting a defective processing of the asparagine-linked carbohydrate chains in the mutant cell. The Had-1 mutant was resistant to wheat germ agglutinin, but sensitive to a Griffonia simplicifolia lectin, GS-II, which recognizes terminal N-acetylglucosamine residues. The altered sensitivity to these plant lectins compared with that of the parental FM3A cells indicates that sialylated sugar chains on the cell surface are almost absent from the Had-1 cells, thereby rendering the cells NDV receptor deficient.  相似文献   

19.
The sequence and structure of the Newcastle disease virus (NDV) fusion (F) protein are consistent with its classification as a type 1 glycoprotein. We have previously reported, however, that F protein can be detected in at least two topological forms with respect to membranes in both a cell-free protein synthesizing system containing membranes and infected COS-7 cells (J. Virol. 77:1951-1963, 2003). One form is the classical type 1 glycoprotein, while the other is a polytopic form in which approximately 200 amino acids of the amino-terminal end as well as the cytoplasmic domain (CT) are translocated across membranes. Furthermore, we detected CT sequences on surfaces of F protein-expressing cells, and antibodies specific for these sequences inhibited red blood cell fusion to hemagglutinin-neuraminidase and F protein-expressing cells, suggesting a role for surface-expressed CT sequences in cell-cell fusion. Extending these findings, we have found that the alternate form of the F protein can also be detected in infected and transfected avian cells, the natural host cells of NDV. Furthermore, the alternate form of the F protein was also found in virions released from both infected COS-7 cells and avian cells by Western analysis. Mass spectrometry confirmed its presence in virions released from avian cells. Two different polyclonal antibodies raised against sequences of the CT domain of the F protein slowed plaque formation in both avian and COS-7 cells. Antibody specific for the CT domain also inhibited single-cycle infections, as detected by immunofluorescence of viral proteins in infected cells. The potential roles of this alternate form of the NDV F protein in infection are discussed.  相似文献   

20.
Madin-Darby canine kidney (MDCK) cells and Chinese hamster ovary (CHO) cells were transfected with wild-type and cytoplasmic deletion mutants of mouse syndecan-1 to study the requirements for transport and polarized expression of this proteoglycan. Expression in MDCK cells revealed that wild-type syndecan-1 is directed to the basolateral surface via a brefeldin A-insensitive route. A deletion of the last 12 amino acids of the syndecan-1 cytoplasmic tail (CT22) was sufficient to result in the appearance of mutant proteoglycans at both the basolateral and apical cell surfaces. Treatment with brefeldin A was able to prevent apical transport of the mutants. We thus propose that the C-terminal part of the cytoplasmic tail is required for steady-state basolateral distribution of syndecan-1. In CHO cells a deletion of the last 25 or 33 amino acids of the 34-residue cytoplasmic domain (CT9 and CT1, respectively) resulted in partial retention of the mutants in the endoplasmic reticulum (ER). A deletion mutant lacking the last 12 amino acids (CT22) was not retained. Interestingly, the unglycosylated core proteins of the CT9 and CT1 mutants showed a significantly lower apparent molecular weight when analyzed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis than wild-type syndecan-1. However, when CHO transfectants expressing the CT1 mutant were incubated with brefeldin A, causing fusion of the ER and Golgi, CT1 ran with an almost equally high apparent molecular weight as the wild-type molecule. This would suggest that syndecan-1 undergoes extensive posttranslational modifications or forms an SDS-resistant dimer/complex after transit from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号