共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence suggests that stimulating apoptosis in malignant cells without inflicting collateral damage to the host''s normal tissues is a promising cancer therapy. Chemo- and radiation therapies that, especially if combined, induce apoptosis in tumor cells have been used for treating cancer patients for decades. These treatments, however, are limited in their ability to discriminate between malignant and non-malignant cells and, therefore, produce substantial healthy tissue damage and subsequent toxic side-effects. In addition, as a result of these therapies, many tumor types acquire an apoptosis-resistant phenotype and become more aggressive and metastatic. Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) has been considered a promising and reliable selective inducer of apoptosis in cancerous cells. TRAIL, however, is not uniformly effective in cancer and multiple cancer cell types are considered resistant to natural TRAIL. To overcome this deficiency of TRAIL, we have earlier constructed a yeast-human hybrid leucine zipper-TRAIL in which the yeast GCN4-pII leucine zipper was fused to human TRAIL (GCN4-TRAIL). This construct exhibited a significantly improved anti-tumor apoptotic activity and safety, but is potentially immunogenic in humans. Here, we report a novel, potent, and fully human ATF7 leucine zipper-TRAIL (ATF7-TRAIL) fusion construct that is expected to have substantially lower immunogenicity. In solution, ATF7-TRAIL exists solely as a trimer with a Tm of 80°C and is active against cancer cells both in vitro and in vivo, in a mouse tumor xenograft model. Our data suggest that our re-engineered TRAIL is a promising candidate for further evaluation as an antitumor agent. 相似文献
2.
3.
Ahmad Jalili Kirsten D. Mertz Julia Romanov Christine Wagner Frank Kalthoff Anton Stuetz Gaurav Pathria Melanie Gschaider Georg Stingl Stephan N. Wagner 《PloS one》2013,8(7)
Melanoma is one of the most aggressive cancers and its incidence is increasing worldwide. So far there are no curable therapies especially after metastasis. Due to frequent mutations in members of the mitogen-activated protein kinase (MAPK) signaling pathway, this pathway is constitutively active in melanoma. It has been shown that the SONIC HEDGEHOG (SHH)-GLI and MAPK signaling pathway regulate cell growth in many tumors including melanoma and interact with each other in the regulation of cell proliferation and survival.Here we show that the SHH-GLI pathway is active in human melanoma cell lines as they express downstream target of this pathway GLI1. Expression of GLI1 was significantly higher in human primary melanoma tissues harboring BRAFV600E mutation than those with wild type BRAF. Pharmacologic inhibition of BRAFV600E in human melanoma cell lines resulted in decreased expression of GLI1 thus demonstrating interaction of SHH-GLI and MAPK pathways. Inhibition of SHH-GLI pathway by the novel small molecule inhibitor of smoothened NVP-LDE225 was followed by inhibition of cell growth and induction of apoptosis in human melanoma cell lines, interestingly with both BRAFV600E and BRAFWild Type status. NVP-LDE225 was potent in reducing cell proliferation and inducing tumor growth arrest in vitro and in vivo, respectively and these effects were superior to the natural compound cyclopamine.Finally, we conclude that inhibition of SHH-GLI signaling pathway in human melanoma by the specific smoothened inhibitor NVP-LDE225 could have potential therapeutic application in human melanoma even in the absence of BRAFV600E mutation and warrants further investigations. 相似文献
4.
Cornelia Richter Sebastian Thieme Joanna Bando?a Magdalena Laugsch Konstantinos Anastassiadis Sebastian Brenner 《PloS one》2013,8(4)
Dendritic cells are the professional antigen presenting cells of innate immunity and key players in maintaining the balance of immune responses. Studies with dendritic cells are mainly limited by their low numbers in vivo and their difficult maintenance in vitro. We differentiated bone marrow cells from transgenic mice expressing an inducible SV40 large T-antigen into dendritic cells. When immortalized by dexamethasone and doxycycline, these cells were stable in long-term culture. In the absence of dexamethasone and doxycycline (de-induction), dendritic cells displayed properties of primary cells, characterized by expression of classical dendritic cell surface markers CD11c, CD11b, MHCII, CD40 and CD86. Furthermore, de-induced lipopolysaccharide activated dendritic cells secreted IL-1β, IL-6, TNFα and IL-12. De-induced, Ovalbumin-loaded dendritic cells polarize CD4+ T cells into Th1, Th17 and Th2 cells, indicating their correct antigen presenting property. Consistent with intratracheal application of Ovalbumin-loaded primary dendritic cells into mice, the application of de-induced dendritic cells resulted in recruitment of lymphocytes to the lungs. In summary, we successfully expanded dendritic cells using conditional immortalization. The generated dendritic cells demonstrate the characteristic immunophenotype of primary dendritic cells and will facilitate further studies on immunomodulatory properties of dendritic cells. 相似文献
5.
6.
Daisuke Takeda Takumi Hasegawa Takeshi Ueha Yusuke Imai Akiko Sakakibara Masaya Minoda Teruya Kawamoto Tsutomu Minamikawa Yasuyuki Shibuya Toshihiro Akisue Yoshitada Sakai Masahiro Kurosaka Takahide Komori 《PloS one》2014,9(7)
Squamous cell carcinoma (SCC) is the main histological type of oral cancer. Its growth rate and incidence of metastasis to regional lymph nodes is influenced by various factors, including hypoxic conditions. We have previously reported that transcutaneous CO2 induces mitochondrial apoptosis and decreases lung metastasis by reoxygenating sarcoma cells. However, previous studies have not determined the sequential mechanism by which transcutaneous CO2 suppresses growth of epithelial tumors, including SCCs. Moreover, there is no report that transcutaneous CO2 suppresses lymphogenous metastasis using human cell lines xenografts. In this study, we examined the effects of transcutaneous CO2 on cancer apoptosis and lymphogenous metastasis using human SCC xenografts. Our results showed that transcutaneous CO2 affects expressions of PGC-1α and TFAM and protein levels of cleavage products of caspase-3, caspase-9 and PARP, which relatives mitochondrial apoptosis. They also showed that transcutaneous CO2 significantly inhibits SCC tumor growth and affects expressions of HIF-1α, VEGF, MMP-2 and MMP-9, which play essential roles in tumor angiogenesis, invasion and metastasis. In conclusion, transcutaneous CO2 suppressed tumor growth, increased mitochondrial apoptosis and decreased the number of lymph node metastasis in human SCC by decreasing intra-tumoral hypoxia and suppressing metastatic potential with no observable effect in vivo. Our findings indicate that transcutaneous CO2 could be a novel therapeutic tool for treating human SCC. 相似文献
7.
Xin Chen Ying Gu Karnika Singh Chaowei Shang Mansoureh Barzegar Shanxiang Jiang Shile Huang 《PloS one》2014,9(12)
Maduramicin, a polyether ionophore antibiotic derived from the bacterium Actinomadura yumaensis, is currently used as a feed additive against coccidiosis in poultry worldwide. It has been clinically observed that maduramicin can cause skeletal muscle and heart cell damage, resulting in skeletal muscle degeneration, heart failure, and even death in animals and humans, if improperly used. However, the mechanism of its toxic action in myoblasts is not well understood. Using mouse myoblasts (C2C12) and human rhabdomyosarcoma (RD and Rh30) cells as an experimental model for myoblasts, here we found that maduramicin inhibited cell proliferation and induced cell death in a concentration-dependent manner. Further studies revealed that maduramicin induced accumulation of the cells at G0/G1 phase of the cell cycle, and induced apoptosis in the cells. Concurrently, maduramicin downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and CDC25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in decreased phosphorylation of Rb. Maduramicin also induced expression of BAK, BAD, DR4, TRADD and TRAIL, leading to activation of caspases 8, 9 and 3 as well as cleavage of poly ADP ribose polymerase (PARP). Taken together, our results suggest that maduramicin executes its toxicity in myoblasts at least by inhibiting cell proliferation and inducing apoptotic cell death. 相似文献
8.
Wnt/β-catenin signaling induced by the Norrin/Frizzled-4 pathway has been shown to improve capillary repair following oxygen induced retinopathy (OIR) in the mouse, a model for retinopathy of prematurity. Here we investigated if treatment with the monovalent cation lithium that has been shown to augment Wnt/β-catenin signaling in vitro and in vivo has similar effects. In cultured human microvascular endothelial cells, LiCl as well as SB 216763, another small molecule that activates Wnt/β-catenin signaling, induced proliferation, survival and migration, which are all common parameters for angiogenic properties in vitro. Moreover, treatment with both agents caused an increase in the levels of β-catenin and their translocation to nuclei while quercetin, an inhibitor of Wnt/β-catenin signaling, completely blocked the effects of LiCl on proliferation. In mice with OIR, intraperitonal or intravitreal treatment with LiCl markedly increased the retinal levels of β-catenin, but did not improve capillary repair. In contrast, repair was significantly improved following intravitreal treatment with Norrin. The effects of LiCl on HDMEC in vitro have minor relevance for OIR in vivo, and the influence of the Norrin/Frizzled-4 pathway on capillary repair in OIR is not reproducible upon enhancing Wnt/β-catenin signaling by LiCl treatment strongly indicating the presence of additional and essential mechanisms. 相似文献
9.
Zhihong Shan Abbas Shakoori Sohrab Bodaghi Paul Goldsmith Jen Jin Jonathan S. Wiest 《PloS one》2013,8(6)
We previously reported the identification of TUSC1 (Tumor Suppressor Candidate 1), as a novel intronless gene isolated from a region of homozygous deletion at D9S126 on chromosome 9p in human lung cancer. In this study, we examine the differential expression of TUSC1 in human lung cancer cell lines by western blot and in a primary human lung cancer tissue microarray by immunohistochemical analysis. We also tested the functional activities and mechanisms of TUSC1 as a tumor suppressor gene through growth suppression in vitro and in vivo. The results showed no expression of TUSC1 in TUSC1 homozygously deleted cells and diminished expression in some tumor cell lines without TUSC1 deletion. Interestingly, the results from a primary human lung cancer tissue microarray suggested that higher expression of TUSC1 was correlated with increased survival times for lung cancer patients. Our data demonstrated that growth curves of tumor cell lines transfected with TUSC1 grew slower in vitro than those transfected with the empty vector. More importantly, xenograph tumors in nude mice grew significantly slower in vivo in cells stably transfected with TUSC1 than those transfected with empty vector. In addition, results from confocal microscopy and immunohistochemical analyses show distribution of TUSC1 in the cytoplasm and nucleus in tumor cell lines and in normal and tumor cells in the lung cancer tissue microarray. Taken together, our results support TUSC1 has tumor suppressor activity as a candidate tumor suppressor gene located on chromosome 9p. 相似文献
10.
Ziv M. Machnes Tony C. T. Huang Philip K. Y. Chang Raminder Gill Nicholas Reist Gabriella Dezsi Ezgi Ozturk Francois Charron Terence J. O’Brien Nigel C. Jones R. Anne McKinney Moshe Szyf 《PloS one》2013,8(10)
Epilepsy is a chronic brain disorder involving recurring seizures often precipitated by an earlier neuronal insult. The mechanisms that link the transient neuronal insult to the lasting state of epilepsy are unknown. Here we tested the possible role of DNA methylation in mediating long-term induction of epileptiform activity by transient kainic acid exposure using in vitro and in vivo rodent models. We analyzed changes in the gria2 gene, which encodes for the GluA2 subunit of the ionotropic glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor and is well documented to play a role in epilepsy. We show that kainic acid exposure for two hours to mouse hippocampal slices triggers methylation of a 5’ regulatory region of the gria2 gene. Increase in methylation persists one week after removal of the drug, with concurrent suppression of gria2 mRNA expression levels. The degree of kainic acid-induced hypermethylation of gria2 5’ region varies between individual slices and correlates with the changes in excitability induced by kainic acid. In a rat in vivo model of post kainic acid-induced epilepsy, we show similar hypermethylation of the 5’ region of gria2. Inter-individual variations in gria2 methylation, correlate with the frequency and intensity of seizures among epileptic rats. Luciferase reporter assays support a regulatory role for methylation of gria2 5’ region. Inhibition of DNA methylation by RG108 blocked kainic acid-induced hypermethylation of gria2 5’ region in hippocampal slice cultures and bursting activity. Our results suggest that DNA methylation of such genes as gria2 mediates persistent epileptiform activity and inter-individual differences in the epileptic response to neuronal insult and that pharmacological agents that block DNA methylation inhibit epileptiform activity raising the prospect of DNA methylation inhibitors in epilepsy therapeutics. 相似文献
11.
Orsolya Kiraly Guanyu Gong Werner Olipitz Sureshkumar Muthupalani Bevin P. Engelward 《PLoS genetics》2015,11(2)
Mutations are a critical driver of cancer initiation. While extensive studies have focused on exposure-induced mutations, few studies have explored the importance of tissue physiology as a modulator of mutation susceptibility in vivo. Of particular interest is inflammation, a known cancer risk factor relevant to chronic inflammatory diseases and pathogen-induced inflammation. Here, we used the fluorescent yellow direct repeat (FYDR) mice that harbor a reporter to detect misalignments during homologous recombination (HR), an important class of mutations. FYDR mice were exposed to cerulein, a potent inducer of pancreatic inflammation. We show that inflammation induces DSBs (γH2AX foci) and that several days later there is an increase in cell proliferation. While isolated bouts of inflammation did not induce HR, overlap between inflammation-induced DNA damage and inflammation-induced cell proliferation induced HR significantly. To study exogenously-induced DNA damage, animals were exposed to methylnitrosourea, a model alkylating agent that creates DNA lesions relevant to both environmental exposures and cancer chemotherapy. We found that exposure to alkylation damage induces HR, and importantly, that inflammation-induced cell proliferation and alkylation induce HR in a synergistic fashion. Taken together, these results show that, during an acute bout of inflammation, there is a kinetic barrier separating DNA damage from cell proliferation that protects against mutations, and that inflammation-induced cell proliferation greatly potentiates exposure-induced mutations. These studies demonstrate a fundamental mechanism by which inflammation can act synergistically with DNA damage to induce mutations that drive cancer and cancer recurrence. 相似文献
12.
Ruixiao Li Chuigong Yu Feng Jiang Lei Gao Jianying Li Yingmei Wang Noor Beckwith Libo Yao Jing Zhang Guojun Wu 《PloS one》2013,8(10)
N-Myc downstream-regulated gene 2 (NDRG2) is a candidate tumor suppressor gene, which plays an important role in controlling tumor growth. The aim of this study was to investigate the expression of NDRG2 gene in bladder cancer (BC) tissues and several bladder cancer cell lines, and to seek its clinical and pathological significance. Ninety-seven bladder carcinoma and 15 normal bladder tissue sections were analyzed retrospectively with immunohistochemistry. The human bladder cancer cell line T24 was infected with LEN-NDRG2 or LEN-LacZ. The effects of NDRG2 overexpression on T24 cells and T24 nude mouse xenografts were measured via cell growth curves, tumor growth curves, flow cytometric analysis, western blot and Transwell assay. NDRG2 was highly expressed in normal bladder tissue, but absent or rarely expressed in cacinomatous tissues (χ2=8.761, p < 0.01). The NDRG2 level was negatively correlated with tumor grade and pathologic stage(r=-0.248, p < 0.05), as well as increased c-myc level (r=-0.454, p< 0.001). The expression of NDRG2 was low in the three BC cell lines. T24 cells infected with LEN-NDRG2 showed inhibition of proliferation both in vitro and in vivo, and NDRG2 overexpression can inhibit tumor growth and invasion in vitro. 相似文献
13.
Rebekah Baskin Sung O. Park Gy?rgy M. Keser? Kirpal S. Bisht Heather L. Wamsley Peter P. Sayeski 《PloS one》2014,9(8)
Glioblastoma multiforme (GBM) is the most common and the most aggressive form of primary brain tumor. Jak2 is a non-receptor tyrosine kinase that is involved in proliferative signaling through its association with various cell surface receptors. Hyperactive Jak2 signaling has been implicated in numerous hematological disorders as well as in various solid tumors including GBM. Our lab has developed a Jak2 small molecule inhibitor known as G6. It exhibits potent efficacy in vitro and in several in vivo models of Jak2-mediated hematological disease. Here, we hypothesized that G6 would inhibit the pathogenic growth of GBM cells expressing hyperactive Jak2. To test this, we screened several GBM cell lines and found that T98G cells express readily detectable levels of active Jak2. We found that G6 treatment of these cells reduced the phosphorylation of Jak2 and STAT3, in a dose-dependent manner. In addition, G6 treatment reduced the migratory potential, invasive potential, clonogenic growth potential, and overall viability of these cells. The effect of G6 was due to its direct suppression of Jak2 function and not via off-target kinases, as these effects were recapitulated in T98G cells that received Jak2 specific shRNA. G6 also significantly increased the levels of caspase-dependent apoptosis in T98G cells, when compared to cells that were treated with vehicle control. Lastly, when T98G cells were injected into nude mice, G6 treatment significantly reduced tumor volume and this was concomitant with significantly decreased levels of phospho-Jak2 and phospho-STAT3 within the tumors themselves. Furthermore, tumors harvested from mice that received G6 had significantly less vimentin protein levels when compared to tumors from mice that received vehicle control solution. Overall, these combined in vitro and in vivo results indicate that G6 may be a viable therapeutic option against GBM exhibiting hyperactivation of Jak2. 相似文献
14.
Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy. 相似文献
15.
Adult-born dentate granule cells integrate into the hippocampal network, extend neurites and form synapses in otherwise mature tissue. Excitatory and inhibitory inputs innervate these new granule cells in a stereotyped, temporally segregated manner, which presents a unique opportunity to study synapse development in the adult brain. To examine the role of neuroligins as synapse-inducing molecules in vivo, we infected dividing neural precursors in adult mice with a retroviral construct that increased neuroligin-1 levels during granule cell differentiation. By 21 days post-mitosis, exogenous neuroligin-1 was expressed at the tips of dendritic spines and increased the number of dendritic spines. Neuroligin-1-overexpressing cells showed a selective increase in functional excitatory synapses and connection multiplicity by single afferent fibers, as well as an increase in the synaptic AMPA/NMDA receptor ratio. In contrast to its synapse-inducing ability in vitro, neuroligin-1 overexpression did not induce precocious synapse formation in adult-born neurons. However, the dendrites of neuroligin-1-overexpressing cells did have more thin protrusions during an early period of dendritic outgrowth, suggesting enhanced filopodium formation or stabilization. Our results indicate that neuroligin-1 expression selectively increases the degree, but not the onset, of excitatory synapse formation in adult-born neurons. 相似文献
16.
Okjae Lim Yuna Lee Hyejin Chung Jung Hyun Her Sang Mi Kang Mi-young Jung Bokyung Min Hyejin Shin Tae Min Kim Dae Seog Heo Yu Kyeong Hwang Eui-Cheol Shin 《PloS one》2013,8(1)
Ex vivo-expanded, allogeneic natural killer (NK) cells can be used for the treatment of various types of cancer. In allogeneic NK cell therapy, NK cells from healthy donors must be expanded in order to obtain a sufficient number of highly purified, activated NK cells. In the present study, we established a simplified and efficient method for the large-scale expansion and activation of NK cells from healthy donors under good manufacturing practice (GMP) conditions. After a single step of magnetic depletion of CD3+ T cells, the depleted peripheral blood mononuclear cells (PBMCs) were stimulated and expanded with irradiated autologous PBMCs in the presence of OKT3 and IL-2 for 14 days, resulting in a highly pure population of CD3−CD16+CD56+ NK cells which is desired for allogeneic purpose. Compared with freshly isolated NK cells, these expanded NK cells showed robust cytokine production and potent cytolytic activity against various cancer cell lines. Of note, expanded NK cells selectively killed cancer cells without demonstrating cytotoxicity against allogeneic non-tumor cells in coculture assays. The anti-tumor activity of expanded human NK cells was examined in SCID mice injected with human lymphoma cells. In this model, expanded NK cells efficiently controlled lymphoma progression. In conclusion, allogeneic NK cells were efficiently expanded in a GMP-compliant facility and demonstrated potent anti-tumor activity both in vitro and in vivo. 相似文献
17.
Akinori Hasegawa Kengo Sato Remina Shirai Rena Watanabe Keigo Yamamoto Kaho Watanabe Kyoko Nohtomi Tsutomu Hirano Takuya Watanabe 《PloS one》2014,9(12)
Aim
Atherosclerosis is the complex lesion that consists of endothelial inflammation, macrophage foam cell formation, vascular smooth muscle cell (VSMC) migration and proliferation, and extracellular matrix production. Human urocortin 1 (Ucn1), a 40-amino acid peptide member of the corticotrophin-releasing factor/urotensin I family, has potent cardiovascular protective effects. This peptide induces potent and long-lasting hypotension and coronary vasodilation. However, the relationship of Ucn1 with atherosclerosis remains unclear. The present study was performed to clarify the effects of Ucn1 on atherosclerosis.Methods
We assessed the effects of Ucn1 on the inflammatory response and proliferation of human endothelial cells (ECs), human macrophage foam cell formation, migration and proliferation of human VSMCs, extracellular matrix expression in VSMCs, and the development of atherosclerosis in apolipoprotein E-deficient (Apoe −/−) mice.Results
Ucn1 significantly suppressed cell proliferation without inducing apoptosis, and lipopolysaccharide-induced up-regulation of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 in human ECs. Ucn1 significantly reduced oxidized low-density lipoprotein-induced foam cell formation with a significant down-regulation of CD36 and acyl-CoA:cholesterol acyltransferase 1 in human monocyte-derived macrophages. Ucn1 significantly suppressed the migration and proliferation of human VSMCs and increased the activities of matrix metalloproteinase-2 (MMP2) and MMP9 in human VSMCs. Intraperitoneal injection of Ucn1 into Apoe −/− mice for 4 weeks significantly retarded the development of aortic atherosclerotic lesions.Conclusions
This study provided the first evidence that Ucn1 prevents the development of atherosclerosis by suppressing EC inflammatory response and proliferation, macrophage foam cell formation, and VSMC migration and proliferation. Thus, Ucn1 could serve as a novel therapeutic target for atherosclerotic cardiovascular diseases. 相似文献18.
Background
Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood.Methodology/Principal Findings
Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K+, Na+), but is enhanced by divalent cations (Mg2+, Ca2+), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution.Conclusions/Significance
These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus. 相似文献19.
20.
Shaina L. Byrne Peter D. Buckett Jonghan Kim Flora Luo Jack Sanford Juxing Chen Caroline Enns Marianne Wessling-Resnick 《PloS one》2013,8(7)
Previous studies have shown that the small molecule iron transport inhibitor ferristatin (NSC30611) acts by down-regulating transferrin receptor-1 (TfR1) via receptor degradation. In this investigation, we show that another small molecule, ferristatin II (NSC8679), acts in a similar manner to degrade the receptor through a nystatin-sensitive lipid raft pathway. Structural domains of the receptor necessary for interactions with the clathrin pathway do not appear to be necessary for ferristatin II induced degradation of TfR1. While TfR1 constitutively traffics through clathrin-mediated endocytosis, with or without ligand, the presence of Tf blocked ferristatin II induced degradation of TfR1. This effect of Tf was lost in a ligand binding receptor mutant G647A TfR1, suggesting that Tf binding to its receptor interferes with the drug’s activity. Rats treated with ferristatin II have lower TfR1 in liver. These effects are associated with reduced intestinal 59Fe uptake, lower serum iron and transferrin saturation, but no change in liver non-heme iron stores. The observed hypoferremia promoted by degradation of TfR1 by ferristatin II appears to be due to induced hepcidin gene expression. 相似文献