首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
APA (aminopeptidase A; EC 3.4.11.7) is a membrane-bound zinc metallopeptidase, also activated by Ca(2+), involved in the formation of brain angiotensin III, which exerts a tonic stimulatory action on the central control of blood pressure in hypertensive animals. In the present study, in the three-dimensional model of the ectodomain of mouse APA, we docked the specific APA inhibitor glutamate phosphonate, in the presence of Ca(2+). The model showed the presence of one Ca(2+) atom in an hydrophilic pocket corresponding to the S1 subsite in which the lateral chain of the inhibitor is pointing. In this pocket, the Ca(2+) atom was hexaco-ordinated with the acidic side chains of Asp(213) and Asp(218), the carbonyl group of Glu(215) and three water molecules, one of them being engaged in a hydrogen bond with the negatively charged carboxylate side chain of the inhibitor. Mutagenic replacement of Asp(213) and Asp(218) with a conservative residue maintained the ability of mutated APAs to be activated by Ca(2+). However, the replacement by a non-conservative residue abolished this property, demonstrating the crucial role of these residues in Ca(2+) binding. We also showed the involvement of these residues in the strict specificity of APA in the presence of Ca(2+) for N-terminal acidic residues from substrates or inhibitors, since mutagenic replacement of Asp(213) and Asp(218) induced a decrease of the inhibitory potencies of inhibitors homologous with acidic residues. Finally, this led to the rational design of a new potent APA inhibitor, NI926 (K(i)=70 nM), which allowed us to precisely localize Asp(213) at the entrance and Asp(218) at the bottom of the S1 subsite. Taken together, these data provide new insight into the organization and functional role of the APA S1 subsite and will allow the design of pharmacophore of the inhibitor, helpful for the development of a new generation of APA inhibitors as central-acting antihypertensive agents.  相似文献   

2.
The structure of cruzain, an essential protease from the parasite Trypanosoma cruzi, was determined by X-ray crystallography bound to two different covalent inhibitors. The cruzain S2 specificity pocket is able to productively bind both arginine and phenylalanine residues. The structures of cruzain bound to benzoyl-Arg-Ala-fluoromethyl ketone and benzoyl-Tyr-Ala-fluoromethyl ketone at 2.2 and 2.1 A, respectively, show a pH-dependent specificity switch. Glu 205 adjusts to restructure the S2 specificity pocket, conferring right binding to both hydrophobic and basic residues. Kinetic analysis of activated peptide substrates shows that substrates placing hydrophobic residues in the specificity pocket are cleaved at a broader pH range than hydrophilic substrates. These results demonstrate how cruzain binds both basic and hydrophobic residues and could be important for in vivo regulation of cruzain activity.  相似文献   

3.
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity.  相似文献   

4.
Dick FA  Dyson NJ 《Journal of virology》2002,76(12):6224-6234
A critical event in papillomavirus transformation of human cells is the inactivation of pRB by the E7 protein. E7, like many other viral oncoproteins, possesses a well-characterized LXCXE peptide motif that interacts with the pocket domain of pRB. Disruption of the LXCXE-binding cleft on pRB renders it resistant to E7 binding and inactivation. Such binding cleft mutants of pRB are capable of inducing a G(1) arrest in the human papillomavirus 18-transformed HeLa cell line. We show here that the efficient inactivation of pRB in HeLa cells does not simply depend on the integrity of the LXCXE-binding cleft. Multiple site-directed mutants that alter conserved surfaces of the pRB pocket domain cause HeLa cells to accumulate in G(1). We divide these mutants into two classes: those that can be bound by E7 and those that cannot. The E7 interacting mutants include changes in conserved residues that lie in a groove between the A and B halves of the pocket. Surprisingly, none of these mutants show a clear defect in any of the known mechanisms for pRB inactivation by E7. Analysis of mutants that are compromised for E7 binding reveals that this interaction depends on both the LXCXE-binding cleft and on a conserved group of lysines adjacent to the cleft. These basic amino acids on pRB define a discrete interaction point with E7. These residues most likely form ionic interactions with conserved acidic amino acids on E7 since a stable pRB/E7 interaction was restored when the lysine residues on pRB and the acidic residues on E7 were interchanged.  相似文献   

5.
With the success of protein kinase inhibitors as drugs to target cancer, there is a continued need for new kinase inhibitor scaffolds. We have investigated the synthesis and kinase inhibition of new heteroaryl-substituted diazaspirocyclic compounds that mimic ATP. Versatile syntheses of substituted diazaspirocycles through ring-closing metathesis were demonstrated. Diazaspirocycles directly linked to heteroaromatic hinge binder groups provided ligand efficient inhibitors of multiple kinases, suitable as starting points for further optimization. The binding modes of representative diazaspirocyclic motifs were confirmed by protein crystallography. Selectivity profiles were influenced by the hinge binder group and the interactions of basic nitrogen atoms in the scaffold with acidic side-chains of residues in the ATP pocket. The introduction of more complex substitution to the diazaspirocycles increased potency and varied the selectivity profiles of these initial hits through engagement of the P-loop and changes to the spirocycle conformation, demonstrating the potential of these core scaffolds for future application to kinase inhibitor discovery.  相似文献   

6.
BACKGROUND: Colicins are antibiotic-like proteins of Escherichia coli that kill related strains. Colicin E3 acts as an RNase that specifically cleaves 16S rRNA, thereby inactivating the ribosomes in the infected cell. The producing organism is protected against colicin E3 by a specific inhibitor, the immunity protein Im3, which forms a tight 1:1 complex with colicin E3 and renders it inactive. Crystallographic studies on colicin E3 and Im3 have been undertaken to unravel the structural basis for the ribonucleolytic activity and its inhibition. RESULTS: The crystal structure of Im3 has been determined to a resolution of 1.8 A. The structure consists of a four-standard antiparallel beta sheet flanked by three alpha helices on one side of the sheet. Thr7, Phe9, Phe16 and Phe74 form a hydrophobic cluster on the surface of the protein in the vicinity of Cys47. This cluster is part of a putative binding pocket which also includes nine polar residues. CONCLUSIONS: The putative binding pocket of Im3 is the probable site of interaction with colicin E3. The six acidic residues in the pocket may interact with some of the numerous basic residues of colicin E3. The involvement of hydrophobic moieties in the binding is consistent with the observation that the tight complex can only be dissociated by denaturation. The structure of Im3 resembles those of certain nucleic acid binding proteins, in particular domain II of topoisomerase I and RNA-binding proteins that contain the ribonucleoprotein (RNP) sequence motif. This observation suggests that Im3 has a nucleic acid binding function in addition to binding colicin E3.  相似文献   

7.
A series of benzoxazinones was used to investigate the interaction of human cathepsin G with acyl-enzyme inhibitors. With respect to the primary specificity of cathepsin G, inhibitors with hydrophobic or basic residues at position 2 were included in the study. Parameters of the enzyme acylation and deacylation were determined by slow-binding kinetics in the presence of a chromogenic substrate. For selected inhibitors, the time course of the enzyme-catalyzed conversion of the inhibitors was followed. This approach was suitable to elucidate a rate-determining deacylation step. Docking simulations of the noncovalent enzyme-inhibitor complexes were performed and several clusters were analyzed for each inhibitor. The amino acids of the active site that participate in the binding of the inhibitors were determined. The arrangements in several clusters of an inhibitor were not uniform with respect to the orientation by which the inhibitor was bound in the S(1) pocket. Docking of the basic piperazino derivatives 6 and 10 indicated an interaction with Glu 226 at the bottom of the S(1) specificity pocket. The (N-methyl)benzylamino derivative 1 showed the strongest acylation rate (k(on)=1200 M(-1) s(-1)), which was attributed to a high extent of pseudo-productive orientations of the noncovalent preassociation complex.  相似文献   

8.
Although the S3 pocket of the thrombin active site is lined with lipophilic amino acid residues, the accommodation of polarity within the lipophilic P3 moiety of small molecule inhibitors is possible provided that the polar functionality is capable of pointing away from the binding pocket outwards toward solvent while simultaneously allowing the lipophilic portion of the P3 ligand to interact with the S3 amino acid residues. Manipulation of this motif provided the means to effect optimization of functional potency, in vivo antithrombotic efficacy and oral bioavailability in a series of 3-aminopyrazinone thrombin inhibitors which contained non-charged groups at the P1 position.  相似文献   

9.
Human macrophage elastase (MMP-12) plays an important role in inflammatory processes and has been implicated in diseases such as emphysema and chronic obstructive pulmonary disease (COPD). It is therefore an attractive target for therapeutic agents.As part of a structure-based drug design programme to find new inhibitors of MMP-12, the crystal structures of the MMP-12 catalytic domain (residues 106-268) complexed to three different non-peptidic small molecule inhibitors have been determined. The structures reveal that all three ligands bind in the S1′ pocket but show varying degrees of interaction with the Zn atom. The structures of the complexes with inhibitors CP-271485 and PF-00356231 reveal that their central morpholinone and thiophene rings, respectively, sit over the Zn atom at a distance of approximately 5 Å, locating the inhibitors halfway down the S1′ pocket. In both of these structures, an acetohydroxamate anion, an artefact of the crystallisation solution, chelates the zinc atom. By contrast, the acetohydroxamate anion is displaced by the ligand in the structure of MMP-12 complexed to PD-0359601 (Bayer), a potent zinc chelating N-substituted biaryl butyric acid, used as a reference compound for crystallisation. Although a racemate was used for the crystallisation, the S enantiomer only is bound in the crystal. Important hydrophobic interactions between the inhibitors and residues from the S1′ pocket are observed in all of the structures. The relative selectivity displayed by these ligands for MMP-12 over other MMP family members is discussed.  相似文献   

10.
Peptide deformylase (PDF) inhibitors have a strong potential to be used as a new class of antibiotics. However, recent studies have shown that the mitochondria of most eukaryotes, including humans, contain an essential PDF, PDF1A. The crystal structure of the Arabidopsis thaliana PDF1A (AtPDF1A), considered representative of PDF1As in general, has been determined. This structure displays several similarities to that of known bacterial PDFs. AtPDF1A behaves as a dimer, with the C-terminal residues responsible for linking the two subunits. This arrangement is similar to that of Leptospira interrogans PDF, the only other dimeric PDF identified to date. AtPDF1A is the first PDF for which zinc has been identified as the catalytic ion. However, the zinc binding pocket does not differ from the binding pockets of PDFs with iron rather than zinc. The crystal structure of AtPDF1A in complex with a substrate analog revealed that the substrate binding pocket of PDF1A displays strong modifications. The S1' binding pocket is significantly narrower, due to the creation of a floor from residues present in all PDF1As but not in bacterial PDFs. A true S3' pocket is created by the residues of a helical CD-loop, which is very long in PDF1As. Finally, these modified substrate binding pockets modify the position of the substrate in the active site. These differences provide guidelines for the design of bacterial PDF inhibitors that will not target mitochondrial PDFs.  相似文献   

11.
The modification of the nonselective nonsteroidal anti-inflammatory drug, indomethacin, by amidation presents a promising strategy for designing novel cyclooxygenase (COX)-2-selective inhibitors. A series of alpha-substituted indomethacin ethanolamides, which exist as R/S-enantiomeric pairs, provides a means to study the impact of stereochemistry on COX inhibition. Comparative studies revealed that the R- and S-enantiomers of the alpha-substituted analogs inhibit COX-2 with almost equal efficacy, whereas COX-1 is selectively inhibited by the S-enantiomers. Mutagenesis studies have not been able to identify residues that manifest the enantioselectivity in COX-1. In an effort to understand the structural impact of chirality on COX-1 selectivity, the crystal structures of ovine COX-1 in complexes with an enantiomeric pair of these indomethacin ethanolamides were determined at resolutions between 2.75 and 2.85 A. These structures reveal unique, enantiomer-selective interactions within the COX-1 side pocket region that stabilize drug binding and account for the chiral selectivity observed with the (S)-alpha-substituted indomethacin ethanolamides. Kinetic analysis of binding demonstrates that both inhibitors bind quickly utilizing a two-step mechanism. However, the second binding step is readily reversible for the R-enantiomer, whereas for the S-enantiomer, it is not. These studies establish for the first time the structural and kinetic basis of high affinity binding of a neutral inhibitor to COX-1 and demonstrate that the side pocket of COX-1, previously thought to be sterically inaccessible, can serve as a binding pocket for inhibitor association.  相似文献   

12.
Several BACE-1 inhibitors with low nanomolar level activities, encompassing a statine-based core structure with phenyloxymethyl- and benzyloxymethyl residues in the P1 position, are presented. The novel P1 modification introduced to allow the facile exploration of the S1 binding pocket of BACE-1, delivered highly promising inhibitors.  相似文献   

13.
Human glutamate carboxypeptidase II [GCPII (EC 3.4.17.21)] is recognized as a promising pharmacological target for the treatment and imaging of various pathologies, including neurological disorders and prostate cancer. Recently reported crystal structures of GCPII provide structural insight into the organization of the substrate binding cavity and highlight residues implicated in substrate/inhibitor binding in the S1' site of the enzyme. To complement and extend the structural studies, we constructed a model of GCPII in complex with its substrate, N-acetyl-l-aspartyl-l-glutamate, which enabled us to predict additional amino acid residues interacting with the bound substrate, and used site-directed mutagenesis to assess the contribution of individual residues for substrate/inhibitor binding and enzymatic activity of GCPII. We prepared and characterized 12 GCPII mutants targeting the amino acids in the vicinity of substrate/inhibitor binding pockets. The experimental results, together with the molecular modeling, suggest that the amino acid residues delineating the S1' pocket of the enzyme (namely Arg210) contribute primarily to the high affinity binding of GCPII substrates/inhibitors, whereas the residues forming the S1 pocket might be more important for the 'fine-tuning' of GCPII substrate specificity.  相似文献   

14.
The crystal structures of the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) complexed to bovine chymotrypsin (C-APPI) and trypsin (T-APPI) and basic pancreatic trypsin inhibitor (BPTI) bound to chymotrypsin (C-BPTI) have been solved and analyzed at 2.1 A, 1.8 A, and 2.6 A resolution, respectively. APPI and BPTI belong to the Kunitz family of inhibitors, which is characterized by a distinctive tertiary fold with three conserved disulfide bonds. At the specificity-determining site of these inhibitors (P1), residue 15(I)4 is an arginine in APPI and a lysine in BPTI, residue types that are counter to the chymotryptic hydrophobic specificity. In the chymotrypsin complexes, the Arg and Lys P1 side chains of the inhibitors adopt conformations that bend away from the bottom of the binding pocket to interact productively with elements of the binding pocket other than those observed for specificity-matched P1 side chains. The stereochemistry of the nucleophilic hydroxyl of Ser 195 in chymotrypsin relative to the scissile P1 bond of the inhibitors is identical to that observed for these groups in the trypsin-APPI complex, where Arg 15(I) is an optimal side chain for tryptic specificity. To further evaluate the diversity of sequences that can be accommodated by one of these inhibitors, APPI, we used phage display to randomly mutate residues 11, 13, 15, 17, and 19, which are major binding determinants. Inhibitors variants were selected that bound to either trypsin or chymotrypsin. As expected, trypsin specificity was principally directed by having a basic side chain at P1 (position 15); however, the P1 residues that were selected for chymotrypsin binding were His and Asn, rather than the expected large hydrophobic types. This can be rationalized by modeling these hydrophilic side chains to have similar H-bonding interactions to those observed in the structures of the described complexes. The specificity, or lack thereof, for the other individual subsites is discussed in the context of the "allowed" residues determined from a phage display mutagenesis selection experiment.  相似文献   

15.
ABSTRACT: Backround Aspartyl aminopeptidase (DNPEP), with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. RESULTS: The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-beta-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. CONCLUSIONS: The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.  相似文献   

16.
17.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

18.
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.  相似文献   

19.
Recent crystallography studies have shown that the binding site oxyanion hole plays an important role in inhibitor binding, but can exist in two conformations (active/inactive). We have undertaken molecular dynamics (MD) calculations to better understand oxyanion hole dynamics and thermodynamics. We find that the Zika virus (ZIKV) NS2B/NS3 protease maintains a stable closed conformation over multiple 100-ns conventional MD simulations in both the presence and absence of inhibitors. The S1, S2, and S3 pockets are stable as well. However, in two of eight simulations, the A132-G133 peptide bond in the binding pocket of S1' spontaneously flips to form a 310-helix that corresponds to the inactive conformation of the oxyanion hole, and then maintains this conformation until the end of the 100-ns conventional MD simulations without inversion of the flip. This conformational change affects the S1' pocket in ZIKV NS2B/NS3 protease active site, which is important for small molecule binding. The simulation results provide evidence at the atomic level that the inactive conformation of the oxyanion hole is more favored energetically when no specific interactions are formed between substrate/inhibitor and oxyanion hole residues. Interestingly, however, transition between the active and inactive conformation of the oxyanion hole can be observed by boosting the valley potential in accelerated MD simulations. This supports a proposed induced-fit mechanism of ZIKV NS2B/NS3 protease from computational methods and provides useful direction to enhance inhibitor binding predictions in structure-based drug design.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号