首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon Monoxide Oxidation by Methanogenic Bacteria   总被引:18,自引:13,他引:18       下载免费PDF全文
Different species of methanogenic bacteria growing on CO(2) and H(2) were shown to remove CO added to the gas phase. Rates up to 0.2 mumol of CO depleted/min per 10 ml of culture containing approximately 7 mg of cells (wet weight) were observed. Methanobacterium thermoautotrophicum was selected for further study based on its ability to grow rapidly on a completely mineral medium. This species used CO as the sole energy source by disproportionating CO to CO(2) and CH(4) according to the following equation: 4CO + 2H(2)O --> 1CH(4) + 3CO(2). However, growth was slight, and the growth rate on CO was only 1% of that observed on H(2)/CO(2). Growth only occurred with CO concentrations in the gas phase of lower than 50%. Growth on CO agrees with the finding that cell-free extracts of M. thermoautotrophicum contained both an active factor 420 (F(420))-dependent hydrogenase (7.7 mumol/min per mg of protein at 35 degrees C) and a CO-dehydrogenating enzyme (0.2 mumol/min per mg of protein at 35 degrees C) that catalyzed the reduction of F(420) with CO. The properties of the CO-dehydrogenating enzyme are described. In addition to F(420), viologen dyes were effective electron acceptors for the enzyme. The apparent K(m) for CO was higher than 1 mM. The reaction rate increased with increasing pH and displayed an inflection point at pH 6.7. The temperature dependence of the reaction rate followed the Arrhenius equation with an activation energy (DeltaHdouble dagger) of 14.1 kcal/mol (59.0 kJ/mol). The CO dehydrogenase activity was reversibly inactivated by low concentrations of cyanide (2 muM) and was very sensitive to inactivation by oxygen. Carbon monoxide dehydrogenase of M. thermoautotrophicum exhibited several characteristic properties found for the enzyme of Clostridium pasteurianum but differed mainly in that the clostridial enzyme did not utilize F(420) as the electron acceptor.  相似文献   

2.
Stressors, Stress Reactions, and Survival of Bacteria: A Review   总被引:1,自引:0,他引:1  
Recent data on the molecular mechanisms of the stress responses of bacteria are reviewed, with emphasis on their reactions to a variety of stressors (heat, oxidation, cold, osmotic shock, etc.). The mechanisms underlying the phenomenon of sensoring are discussed. It is shown that cross-resistance to stressors and cell-to-cell communication, mediated by chemical metabolites, affect bacterial survival in food products. The stress-antagonizing activity of bacteria is discussed in relation to food product biotechnology.  相似文献   

3.
4.
5.
Mechanism of Enhancement of IAA Oxidation by 2,4-Dichlorophenol   总被引:1,自引:1,他引:0       下载免费PDF全文
Fox LR  Purves WK 《Plant physiology》1968,43(3):454-456
  相似文献   

6.
Abstract

Redox reactions of iron in acidic environments are of economic and environmental significance, for example, for the leaching of metal ores and for the formation of acid mine drainage and acid sulfate soils. Until recently, research on microbial iron metabolism in acidic environments has mainly been focused on the role of aerobic, autotrophic ferrous iron‐oxidizing bacteria. In the present paper, recent new developments in the field of acidophilic iron metabolism are reviewed. In addition to the well‐known autotrophic ferrous iron‐oxidizing organisms, new heterotrophic isolates have been described that are capable of oxidizing ferrous iron. Microorganisms can also play an important role in the reductive part of the iron cycle. Both heterotrophic and autotrophic organisms may also be involved in this process. The contribution of heterotrophic organisms to acidophilic iron cycling can be twofold: In addition to their direct role as a catalyst, these organisms may scavenge organic compounds that inhibit their autotrophic counterparts. Detailed studies of acidophilic ecosystems are needed to assess the significance of the various types of microorganisms for the overall rate of iron cycling in these extreme environments.  相似文献   

7.
We examined nitrate-dependent Fe2+ oxidation mediated by anaerobic ammonium oxidation (anammox) bacteria. Enrichment cultures of “Candidatus Brocadia sinica” anaerobically oxidized Fe2+ and reduced NO3 to nitrogen gas at rates of 3.7 ± 0.2 and 1.3 ± 0.1 (mean ± standard deviation [SD]) nmol mg protein−1 min−1, respectively (37°C and pH 7.3). This nitrate reduction rate is an order of magnitude lower than the anammox activity of “Ca. Brocadia sinica” (10 to 75 nmol NH4+ mg protein−1 min−1). A 15N tracer experiment demonstrated that coupling of nitrate-dependent Fe2+ oxidation and the anammox reaction was responsible for producing nitrogen gas from NO3 by “Ca. Brocadia sinica.” The activities of nitrate-dependent Fe2+ oxidation were dependent on temperature and pH, and the highest activities were seen at temperatures of 30 to 45°C and pHs ranging from 5.9 to 9.8. The mean half-saturation constant for NO3 ± SD of “Ca. Brocadia sinica” was determined to be 51 ± 21 μM. Nitrate-dependent Fe2+ oxidation was further demonstrated by another anammox bacterium, “Candidatus Scalindua sp.,” whose rates of Fe2+ oxidation and NO3 reduction were 4.7 ± 0.59 and 1.45 ± 0.05 nmol mg protein−1 min−1, respectively (20°C and pH 7.3). Co-occurrence of nitrate-dependent Fe2+ oxidation and the anammox reaction decreased the molar ratios of consumed NO2 to consumed NH4+ (ΔNO2/ΔNH4+) and produced NO3 to consumed NH4+ (ΔNO3/ΔNH4+). These reactions are preferable to the application of anammox processes for wastewater treatment.  相似文献   

8.
9.
New data obtained by the author and other researchers on two different groups of obligately heterotrophic bacteria capable of inorganic sulfur oxidation are reviewed. Among culturable marine and (halo)alkaliphilic heterotrophs oxidizing sulfur compounds (thiosulfate and, much less actively, elemental sulfur and sulfide) incompletely to tetrathionate, representatives of the gammaproteobacteria, especially from the Halomonas group, dominate. Some denitrifying species from this group are able to carry out anaerobic oxidation of thiosulfate and sulfide using nitrogen oxides as electron acceptors. Despite the low energy output of the reaction of thiosulfate oxidation to tetrathionate, it can be utilized for ATP synthesis by some tetrathionate-producing heterotrophs; however, this potential is not always realized during their growth. Another group of marine and (halo)alkaliphilic heterotrophic bacteria capable of complete oxidation of sulfur compounds to sulfate mostly includes representatives of the alphaproteobacteria which are most closely related to nonsulfur purple bacteria. They can oxidize sulfide (polysulfide), thiosulfate, and elemental sulfur via sulfite to sulfate but neither produce nor oxidize tetrathionate. All of the investigated sulfate-forming heterotrophic bacteria belong to lithoheterotrophs, being able to gain additional energy from the oxidation of sulfur compounds during heterotrophic growth on organic substrates. Some doubtful cases of heterotrophic sulfur oxidation described in the literature are also discussed.  相似文献   

10.
11.
12.
13.
14.
Anaerobic ammonium oxidation (anammox) is a recently discovered microbial pathway and a cost-effective way to remove ammonium from wastewater. Anammox bacteria have been described as obligate chemolithoautotrophs. However, many chemolithoautotrophs (i.e., nitrifiers) can use organic compounds as a supplementary carbon source. In this study, the effect of organic compounds on anammox bacteria was investigated. It was shown that alcohols inhibited anammox bacteria, while organic acids were converted by them. Methanol was the most potent inhibitor, leading to complete and irreversible loss of activity at concentrations as low as 0.5 mM. Of the organic acids acetate and propionate, propionate was consumed at a higher rate (0.8 nmol min−1 mg of protein−1) by Percoll-purified anammox cells. Glucose, formate, and alanine had no effect on the anammox process. It was shown that propionate was oxidized mainly to CO2, with nitrate and/or nitrite as the electron acceptor. The anammox bacteria carried out propionate oxidation simultaneously with anaerobic ammonium oxidation. In an anammox enrichment culture fed with propionate for 150 days, the relative amounts of anammox cells and denitrifiers did not change significantly over time, indicating that anammox bacteria could compete successfully with heterotrophic denitrifiers for propionate. In conclusion, this study shows that anammox bacteria have a more versatile metabolism than previously assumed.  相似文献   

15.
Eleven strains of alkene-utilizing bacteria belonging to the genera Mycobacterium, Nocardia, and Xanthobacter were tested for their ability to grow with C1 to C6 alkanes, C2 to C6 alkenes, alkadienes, and monoterpenes furnished individually as sole sources of carbon and energy in a mineral salts medium. A limited number of alkenes and alkanes supported growth of the bacteria; some bacteria were unable to grow on any of the saturated hydrocarbons tested. Monoterpenes were frequently used as carbon and energy sources by alkene-utilizing bacteria belonging to the genera Mycobacterium and Nocardia. Washed cell suspensions of alkene-grown bacteria attacked the whole range of alkenes tested, whereas only three strains were able to oxidize alkanes as well. The alkenes tested were oxidized either to water and carbon dioxide or to epoxyalkanes. Few epoxides accumulated in stoichiometric amounts from the corresponding alkenes, because most epoxides formed were further converted to other compounds like alkanediols.  相似文献   

16.
Sections cut from regions of cell elongation of hypocotyls of dark-grown soybean seedlings oxidized externally supplied NADH as estimated from the decrease in A340 measured spectrophotometrically. The oxidation of NADH by 1-cm sections was stimulated 1.5- to 2-fold by 1 μM of the synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D-Stimulated oxidation of NADH was resistant to cyanide. Stimulations were also given by the naturally occurring auxin, indole-3-acetic acid (IAA) but not by the growth inactive 2,4-D analog 2,3-dichlorophenoxyacetic acid (2,3-D) and the growth inactive β-naphthaleneacetic acid (β-NAA). Since NADH is a membrane impermeant substrate, the findings confirm studies with inside-out and right-side-out vesicles that show the 2,4-D-stimulated NADH oxidase to be located at the external cell surface. Cut surfaces are not responsible for the activity as shown by experiments with lanolin-sealed sections. The external NADH oxidase measurements do not require special equipment and exhibit characteristics normally associated with enzyme-catalyzed reactions.  相似文献   

17.
Phylogenetically diverse species of bacteria can catalyze the oxidation of ferrous iron [Fe(II)] coupled to nitrate (NO3) reduction, often referred to as nitrate-dependent iron oxidation (NDFO). Very little is known about the biochemistry of NDFO, and though growth benefits have been observed, mineral encrustations and nitrite accumulation likely limit growth. Acidovorax ebreus, like other species in the Acidovorax genus, is proficient at catalyzing NDFO. Our results suggest that the induction of specific Fe(II) oxidoreductase proteins is not required for NDFO. No upregulated periplasmic or outer membrane redox-active proteins, like those involved in Fe(II) oxidation by acidophilic iron oxidizers or anaerobic photoferrotrophs, were observed in proteomic experiments. We demonstrate that while “abiotic” extracellular reactions between Fe(II) and biogenic NO2/NO can be involved in NDFO, intracellular reactions between Fe(II) and periplasmic components are essential to initiate extensive NDFO. We present evidence that an organic cosubstrate inhibits NDFO, likely by keeping periplasmic enzymes in their reduced state, stimulating metal efflux pumping, or both, and that growth during NDFO relies on the capacity of a nitrate-reducing bacterium to overcome the toxicity of Fe(II) and reactive nitrogen species. On the basis of our data and evidence in the literature, we postulate that all respiratory nitrate-reducing bacteria are innately capable of catalyzing NDFO. Our findings have implications for a mechanistic understanding of NDFO, the biogeochemical controls on anaerobic Fe(II) oxidation, and the production of NO2, NO, and N2O in the environment.  相似文献   

18.
Cytochrome P450 (P450) 2U1 has been shown to be expressed, at the mRNA level, in human thymus, brain, and several other tissues. Recombinant P450 2U1 was purified and used as a reagent in a metabolomic search for substrates in bovine brain. In addition to fatty acid oxidation reactions, an oxidation of endogenous N-arachidonoylserotonin was characterized. Subsequent NMR and mass spectrometry and chemical synthesis showed that the main product was the result of C-2 oxidation of the indole ring, in contrast to other human P450s that generated different products. N-Arachidonoylserotonin, first synthesized chemically and described as an inhibitor of fatty acid amide hydrolase, had previously been found in porcine and mouse intestine; we demonstrated its presence in bovine and human brain samples. The product (2-oxo) was 4-fold less active than N-arachidonoylserotonin in inhibiting fatty acid amide hydrolase. The rate of oxidation of N-arachidonoylserotonin was similar to that of arachidonic acid, one of the previously identified fatty acid substrates of P450 2U1. The demonstration of the oxidation of N-arachidonoylserotonin by P450 2U1 suggests a possible role in human brain and possibly other sites.  相似文献   

19.
Infection of potato tubers by the soft-rotting fungi Phytophthoraerythroseptica and Pythium debaryanum resulted in multiplicationof endogenous tuber bacteria. This effect was not evident afterinfection by dryrotting fungi. Some of the bacteria isolatedproduced pectolytic and hemicellulolytic enzymes in vitro andwere themselves capable under certain conditions of degradingtuber tissue.  相似文献   

20.
Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N2O production and methane oxidation in soils. Most of our knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. We have conducted a comparative study of levels of aerobic N2O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N2O during aerobic growth was remarkably constant (0.07 to 0.1%) for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N2O when they were supplied with ample amounts of substrates, but the fractions rose sharply (to 1 to 5%) when they were restricted by a low pH or substrate limitation. Phosphate buffer (versus HEPES) doubled the N2O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH4 oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH4 in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号