共查询到20条相似文献,搜索用时 31 毫秒
1.
Stacy L. Erickson Elizabeth O. Corpuz Jeffrey P. Maloy Christy Fillman Kristofer Webb Eric J. Bennett Jens Lykke-Andersen 《Molecular and cellular biology》2015,35(12):2144-2153
mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are controlled by a competition between decapping complex assembly and Dcp2 degradation. This is mediated by a regulatory domain in the Dcp2 C terminus, which, on the one hand, promotes Dcp2 activation via decapping complex formation mediated by the decapping enhancer Hedls and, on the other hand, targets Dcp2 for ubiquitin-mediated proteasomal degradation in the absence of Hedls association. This competition between Dcp2 activation and degradation restricts the accumulation and activity of uncomplexed Dcp2, which may be important for preventing uncontrolled decapping or for regulating Dcp2 levels and activity according to cellular needs. 相似文献
2.
3.
Andrei S. Halavaty Dominika Borek Gregory H. Tyson Jeff L. Veesenmeyer Ludmilla Shuvalova George Minasov Zbyszek Otwinowski Alan R. Hauser Wayne F. Anderson 《PloS one》2012,7(11)
Disease causing bacteria often manipulate host cells in a way that facilitates the infectious process. Many pathogenic gram-negative bacteria accomplish this by using type III secretion systems. In these complex secretion pathways, bacterial chaperones direct effector proteins to a needle-like secretion apparatus, which then delivers the effector protein into the host cell cytosol. The effector protein ExoU and its chaperone SpcU are components of the Pseudomonas aeruginosa type III secretion system. Secretion of ExoU has been associated with more severe infections in both humans and animal models. Here we describe the 1.92 Å X-ray structure of the ExoU–SpcU complex, a full-length type III effector in complex with its full-length cognate chaperone. Our crystallographic data allow a better understanding of the mechanism by which ExoU kills host cells and provides a foundation for future studies aimed at designing inhibitors of this potent toxin. 相似文献
4.
5.
Pierre Roblin Frédérique Dewitte Vincent Villeret Emanuele G. Biondi Coralie Bompard 《Journal of bacteriology》2015,197(4):688-698
Many bacterial pathogens use type three secretion systems (T3SS) to inject virulence factors, named effectors, directly into the cytoplasm of target eukaryotic cells. Most of the T3SS components are conserved among plant and animal pathogens, suggesting a common mechanism of recognition and secretion of effectors. However, no common motif has yet been identified for effectors allowing T3SS recognition. In this work, we performed a biochemical and structural characterization of the Salmonella SopB/SigE chaperone/effector complex by small-angle X-ray scattering (SAXS). Our results showed that the SopB/SigE complex is assembled in dynamic homohexameric-ring-shaped structures with an internal tunnel. In this ring, the chaperone maintains a disordered N-terminal end of SopB molecules, in a good position to be reached and processed by the T3SS. This ring dimensionally fits the ring-organized molecules of the injectisome, including ATPase hexameric rings; this organization suggests that this structural feature is important for ATPase recognition by T3SS. Our work constitutes the first evidence of the oligomerization of an effector, analogous to the organization of the secretion machinery, obtained in solution. As effectors share neither sequence nor structural identity, the quaternary oligomeric structure could constitute a strategy evolved to promote the specificity and efficiency of T3SS recognition. 相似文献
6.
7.
8.
Jing Dong Fangming Xiao Fenxia Fan Lichuan Gu Huaixing Cang Gregory B. Martin Jijie Chai 《The Plant cell》2009,21(6):1846-1859
Resistance to bacterial speck disease in tomato (Solanum lycopersicum) is activated upon recognition by the host Pto kinase of either one of two sequence-unrelated effector proteins, AvrPto or AvrPtoB, from Pseudomonas syringae pv tomato (Pst). Pto induces Pst immunity by acting in concert with the Prf protein. The recently reported structure of the AvrPto-Pto complex revealed that interaction of AvrPto with Pto appears to relieve an inhibitory effect of Pto, allowing Pto to activate Prf. Here, we present the crystal structure of the Pto binding domain of AvrPtoB (residues 121 to 205) at a resolution of 1.9Å and of the AvrPtoB121-205–Pto complex at a resolution of 3.3 Å. AvrPtoB121-205 exhibits a tertiary fold that is completely different from that of AvrPto, and its conformation remains largely unchanged upon binding to Pto. In common with AvrPto-Pto, the AvrPtoB-Pto complex relies on two interfaces. One of these interfaces is similar in both complexes, although the primary amino acid sequences from the two effector proteins are very different. Amino acid substitutions in Pto at the other interface disrupt the interaction of AvrPtoB-Pto but not that of AvrPto-Pto. Interestingly, substitutions in Pto affecting this unique interface also cause Pto to induce Prf-dependent host cell death independently of either effector protein. 相似文献
9.
Rachna Aneja Manish Datt Balwinder Singh Shekhar Kumar Girish Sahni 《The Journal of biological chemistry》2009,284(47):32642-32650
With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the β-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the β-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in kcat without any alteration in apparent substrate affinity (Km) as compared with wild-type streptokinase and identified the importance of Lys180 as well as Pro177 in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in “partner” plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in kcat as that observed in the case of full-length plasminogen, with no concomitant change in Km. These results strongly suggest that the 170 loop of the β-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se. 相似文献
10.
11.
《Trends in genetics : TIG》2023,39(9):642-643
miRNAs regulate mRNAs, including those important for synapse function in the brain. Mucha and colleagues recently identified a novel miRNA–mRNA interaction in the basolateral amygdala that acts as a homeostatic counter to stress-induced anxiety and synaptic changes, suggesting miRNAs as potential avenues for therapeutic intervention in anxiety disorders. 相似文献
12.
Cyclophilin D Modulates Mitochondrial F0F1-ATP Synthase by Interacting with the Lateral Stalk of the Complex 总被引:1,自引:0,他引:1
Valentina Giorgio Elena Bisetto Maria Eugenia Soriano Federica Dabbeni-Sala Emy Basso Valeria Petronilli Michael A. Forte Paolo Bernardi Giovanna Lippe 《The Journal of biological chemistry》2009,284(49):33982-33988
Blue native gel electrophoresis purification and immunoprecipitation of F0F1-ATP synthase from bovine heart mitochondria revealed that cyclophilin (CyP) D associates to the complex. Treatment of intact mitochondria with the membrane-permeable bifunctional reagent dimethyl 3,3-dithiobis-propionimidate (DTBP) cross-linked CyPD with the lateral stalk of ATP synthase, whereas no interactions with F1 sector subunits, the ATP synthase natural inhibitor protein IF1, and the ATP/ADP carrier were observed. The ATP synthase-CyPD interactions have functional consequences on enzyme catalysis and are modulated by phosphate (increased CyPD binding and decreased enzyme activity) and cyclosporin (Cs) A (decreased CyPD binding and increased enzyme activity). Treatment of MgATP submitochondrial particles or intact mitochondria with CsA displaced CyPD from membranes and activated both hydrolysis and synthesis of ATP sustained by the enzyme. No effect of CsA was detected in CyPD-null mitochondria, which displayed a higher specific activity of the ATP synthase than wild-type mitochondria. Modulation by CyPD binding appears to be independent of IF1, whose association to ATP synthase was not affected by CsA treatment. These findings demonstrate that CyPD association to the lateral stalk of ATP synthase modulates the activity of the complex. 相似文献
13.
14.
15.
16.
Lihu Gong Min Liu Tu Zeng Xiaoli Shi Cai Yuan Peter A. Andreasen Mingdong Huang 《The Journal of biological chemistry》2015,290(43):25795-25804
Thrombosis is a leading cause of death worldwide. Recombinant tissue-type plasminogen activator (tPA) is the Food and Drug Administration-approved thrombolytic drug. tPA is rapidly inactivated by endogenous plasminogen activator inhibitor-1 (PAI-1). Engineering on tPA to reduce its inhibition by PAI-1 without compromising its thrombolytic effect is a continuous effort. Precise details, with atomic resolution, of the molecular interactions between tPA and PAI-1 remain unknown despite previous extensive studies. Here, we report the crystal structure of the tPA·PAI-1 Michaelis complex, which shows significant differences from the structure of its urokinase-type plasminogen activator analogue, the uPA·PAI-1 Michaelis complex. The PAI-1 reactive center loop adopts a unique kinked conformation. The structure provides detailed interactions between tPA 37- and 60-loops with PAI-1. On the tPA side, the S2 and S1β pockets open up to accommodate PAI-1. This study provides structural basis to understand the specificity of PAI-1 and to design newer generation of thrombolytic agents with reduced PAI-1 inactivation. 相似文献
17.
18.
19.
Functional Synergy between Rab5 Effector Rabaptin-5 and Exchange
Factor Rabex-5 When Physically Associated in a Complex 下载免费PDF全文
Roger Lipp Marta Miaczynska Vladimir Rybin Anja Runge Marino Zerial 《Molecular biology of the cell》2001,12(7):2219-2228
Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases. 相似文献
20.