首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We evaluated 13 rice models against multi‐year experimental yield data at four sites with diverse climatic conditions in Asia and examined whether different modeling approaches on major physiological processes attribute to the uncertainties of prediction to field measured yields and to the uncertainties of sensitivity to changes in temperature and CO2 concentration [CO2]. We also examined whether a use of an ensemble of crop models can reduce the uncertainties. Individual models did not consistently reproduce both experimental and regional yields well, and uncertainty was larger at the warmest and coolest sites. The variation in yield projections was larger among crop models than variation resulting from 16 global climate model‐based scenarios. However, the mean of predictions of all crop models reproduced experimental data, with an uncertainty of less than 10% of measured yields. Using an ensemble of eight models calibrated only for phenology or five models calibrated in detail resulted in the uncertainty equivalent to that of the measured yield in well‐controlled agronomic field experiments. Sensitivity analysis indicates the necessity to improve the accuracy in predicting both biomass and harvest index in response to increasing [CO2] and temperature.  相似文献   

2.
Machine learning (ML) along with high volume of satellite images offers an alternative to agronomists in crop yield predictions for decision support systems. This research exploited the possibility of using monthly image composites from Sentinel-2 imageries for rice crop yield predictions one month before the harvesting period at the field level using ML techniques in Taiwan. Three ML models, including random forest (RF), support vector machine (SVM), and artificial neural networks (ANN), were designed to address the research question of yield predictions in four consecutive growing seasons from 2019 to 2020 using field survey data. The research findings of yield modeling and predictions showed that SVM slightly outperformed RF and ANN. The results of model validation, obtained from SVM models using the data from transplanting to ripening, showed that the root mean square percentage error (RMSPE) and the mean absolute percentage error (MAPE) values were 5.5% and 4.5% for the 2019 second crop, and 4.7% and 3.5% for the 2020 first crop, respectively. The results of yield predictions (obtained from SVM) for the 2019 second crop and the 2020 first crop evaluated against the government statistics indicated a close agreement between these two datasets, with the RMSPE and MAPE values generally smaller than 11.2% and 9.2%. The SVM model configuration parameters used for rice crop yield predictions indicated satisfactory results. The comparison results between the predicted yields and the official statistics showed slight underestimations, with RMSPE and MAPE values of 9.4% and 7.1% for the 2019 first crop (hindcast), and 11.0% and 9.4% for the 2020 second crop (forecast), respectively. This study has successfully proven the validity of our methods for yield modeling and prediction from monthly composites from Sentinel-2 imageries using ML algorithms. The research findings from this research work could useful for agronomists to timely formulate action plans to address national food security issues.  相似文献   

3.
Question: What relationships exist between remotely sensed measurements and field observations of species density and abundance of tree species? Can these relationships and spatial interpolation approaches be used to improve the accuracy of prediction of species density and abundance of tree species? Location: Quintana Roo, Yucatan peninsula, Mexico. Methods: Spatial prediction of species density and abundance of species for three functional groups was performed using regression kriging, which considers the linear relationship between dependent and explanatory variables, as well as the spatial dependence of the observations. These relationships were explored using regression analysis with species density and abundance of species of three functional groups as dependent variables, and reflectance values of spectral bands, computed NDVI (normalized difference vegetation index), standard deviation of NDVI and texture measurements of Landsat 7 Thematic Mapper (TM) imagery as explanatory variables. Akaike information criterion was employed to select a set of candidate models and calculate model‐averaged parameters. Variogram analysis was used to analyze the spatial structure of the residuals of the linear regressions. Results: Species density of trees was related to reflectance values of TM4, NDVI and spatial heterogeneity of land cover types, while the abundance of species in functional groups showed different patterns of association with remotely sensed data. Models that accounted for spatial autocorrelation improved the accuracy of estimates in all cases. Conclusions: Our approach can substantially increase the accuracy of the spatial estimates of species richness and abundance of tropical tree species and can help guide and evaluate tropical forest management and conservation.  相似文献   

4.
Existing crop models produce unsatisfactory simulation results and are operationally complicated. The present study, however, demonstrated the unique advantages of statistical crop models for large-scale simulation. Using rice as the research crop, a support vector machine-based open crop model (SBOCM) was developed by integrating developmental stage and yield prediction models. Basic geographical information obtained by surface weather observation stations in China and the 1:1000000 soil database published by the Chinese Academy of Sciences were used. Based on the principle of scale compatibility of modeling data, an open reading frame was designed for the dynamic daily input of meteorological data and output of rice development and yield records. This was used to generate rice developmental stage and yield prediction models, which were integrated into the SBOCM system. The parameters, methods, error resources, and other factors were analyzed. Although not a crop physiology simulation model, the proposed SBOCM can be used for perennial simulation and one-year rice predictions within certain scale ranges. It is convenient for data acquisition, regionally applicable, parametrically simple, and effective for multi-scale factor integration. It has the potential for future integration with extensive social and economic factors to improve the prediction accuracy and practicability.  相似文献   

5.
Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long‐term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water‐limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well‐maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA‐POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location‐specific observed daily weather databases combined with an appropriate upscaling method.  相似文献   

6.
Open ocean predator‐prey interactions are often difficult to interpret because of a lack of information on prey fields at scales relevant to predator behaviour. Hence, there is strong interest in identifying the biological and physical factors influencing the distribution and abundance of prey species, which may be of broad predictive use for conservation planning and evaluating effects of environmental change. This study focuses on a key Southern Ocean prey species, Antarctic krill Euphausia superba, using acoustic observations of individual swarms (aggregations) from a large‐scale survey off East Antarctica. We developed two sets of statistical models describing swarm characteristics, one set using underway survey data for the explanatory variables, and the other using their satellite remotely sensed analogues. While survey data are in situ and contemporaneous with the swarm data, remotely sensed data are all that is available for prediction and inference about prey distribution in other areas or at other times. The fitted models showed that the primary biophysical influences on krill swarm characteristics included daylight (solar elevation/radiation) and proximity to the Antarctic continental slope, but there were also complex relationships with current velocities and gradients. Overall model performance was similar regardless of whether underway or remotely sensed predictors were used. We applied the latter models to generate regional‐scale spatial predictions using a 10‐yr remotely‐sensed time series. This retrospective modelling identified areas off east Antarctica where relatively dense krill swarms were consistently predicted during austral mid‐summers, which may underpin key foraging areas for marine predators. Spatiotemporal predictions along Antarctic predator satellite tracks, from independent studies, illustrate the potential for uptake into further quantitative modelling of predator movements and foraging. The approach is widely applicable to other krill‐dependent ecosystems, and our findings are relevant to similar efforts examining biophysical linkages elsewhere in the Southern Ocean and beyond.  相似文献   

7.
Questions: What are the patterns of remotely sensed vegetation phenology, including their inter‐annual variability, across South Africa? What are the phenological attributes that contribute most to distinguishing the different biomes? How well can the distribution of the recently redefined biomes be predicted based on remotely sensed, phenology and productivity metrics? Location: South Africa. Method: Ten‐day, 1 km, NDVI AVHRR were analysed for the period 1985 to 2000. Phenological metrics such as start, end and length of the growing season and estimates of productivity, based on small and large integral (SI, LI) of NDVI curve, were extracted and long‐term means calculated. A random forest regression tree was run using the metrics as the input variables and the biomes as the dependent variable. A map of the predicted biomes was reproduced and the differentiating importance of each metric assessed. Results: The phenology metrics (e.g. start of growing season) showed a clear relationship with the seasonality of rainfall, i.e. winter and summer growing seasons. The distribution of the productivity metrics, LI and SI were significantly correlated with mean annual precipitation. The regression tree initially split the biomes based on vegetation production and then by the seasonality of growth. A regression tree was used to produce a predicted biome map with a high level of accuracy (73%). Main conclusion: Regression tree analysis based on remotely sensed metrics performed as good as, or better than, previous climate‐based predictors of biome distribution. The results confirm that the remotely sensed metrics capture sufficient functional diversity to classify and map biome level vegetation patterns and function.  相似文献   

8.
随着气候变化对农业系统的影响不断加剧,为保障粮食安全,须掌握变化中的自然与人文因素,而农业生态系统中变化最为明显直观的是农作物物候特征,如何提取大区域尺度上农作物物候期以及种植制度的时空格局特征,是评价区域粮食安全的重要因素.基于多时相遥感信息可以有效反映年内/年际农作物物候特征变化的原理,首先利用近10a来的SPOT/VGT-NDVI时间序列数据,在进行数据序列平滑重构处理基础上,提取了华北地区农作物典型物候期的数量分布与空间格局特征;然后,基于上述物候期的分异特性建立了一年一熟和一年二熟等种植制度类型的遥感识别标志;最后,重点分析了上述种植制度的空间格局及其时间波动特征,并利用农业统计资料对提取结果进行了简单验证.分析结果表明,作物物候期特征的数量分布和空间分布在不同生长季均具有显著差异,直接体现了与外界环境条件(诸如区域温度、降水和光照等)的匹配程度以及作物类型自身的生长特征;从主要种植制度空间分布来看,华北地区南部地区农作物类型以夏收作物和二熟秋收作物为主,与之对应的农田种植制度以一年两熟为主;华北地区北部主要为一熟制区域,作物类型以一年一熟秋收作物为主,作物种植制度空间分布随着纬度递减呈现出简单到复杂的总体趋势;从近10a的种植情况来看,一年一熟作物种植面积最大,年际变化幅度亦较大,一年二熟的夏收作物种植比例次之,而年际变幅最小,二熟秋收作物比例最低,其年际变幅居中.研究中亦提出,在进一步加强多时相遥感技术监测大区域农业生态系统动态变化的同时,亦需深入探讨作物物候特征及种植制度变化的驱动因素及其对国家粮食安全的影响.  相似文献   

9.
Remote sensing technologies have been advanced continuously to a certain level for multi-scale applications to ease social and political concerns resulting from food security. In this study, an integrated monitoring, sensing and modeling system for estimating CO2 fixation and grain yields using a photosynthetic sterility model was developed. Input data for model computation include observed meteorological data, numerical prediction reanalysis data, and satellite data such as solar radiation, land-cover and Normalized Difference Vegetation Index (NDVI) on a continental scale. Model validation requires crop yields and the Crop Situation Index (CSI) was provided by the Japanese government. It also demonstrates the application potential of this system to grain fields of paddy rice, winter wheat, and maize in Southeast Asia. The carbon hydrate in grains has the same chemical formula as that of cellulose in grain vegetation. The partition of sequestered CO2 into grain, straw, and root portions of plant biomass weight was computed. The present photosynthesis model was evaluated using the mass of carbon included in the harvested grains of provincial crop production. Results indicate that the proposed system successfully estimates the photosynthesis fixation of rice reasonably well in Japan and China through the analysis of carbon in grains. However, the model tends to underestimate the photosynthesis rates for winter wheat and maize. The parameterization of radiation response function and the temperature response functions for low-temperature sterility need to be improved in the future.  相似文献   

10.
Time series of rice yields consist of a technology-driven trend and variations caused by climate fluctuations. To explore the relationship between yields and climate, the trend and temporal variation often have to be separated. In this study, a progressive-difference method was applied to eliminate the trend in time series. By differentiating yields and climatic factors in 2 successive years, the relationship between variations in yield and climatic factors was determined with multiple- regression analysis. The number of hours of sunshine, the temperature and the precipitation were each defined for different intervals during the growing season and used as different regression variables. Rice yields and climate data for the Yangtze Delta of China from 1961 to 1990 were used as a case study. The number of hours of sunshine during the tillering stage and the heading to milk stage particularly affected the yield. In both periods radiation was low. In the first period, the vegetative organs of the rice crop were formed while in the second period solar radiation was important for grain filling. The average temperature during the tillering to jointing stage reached its maximum, which affected rice yields negatively. Precipitation was generally low during the jointing and booting stages, which had a positive correlation with yield, while high precipitation had a negative effect during the milk stage. The results indicate that the climatic factors should be expressed as 20- to 30-day averages in the Yangtze Delta; a shorter or longer period, e.g. 10 or 40 days, is less appropriate. Received: 30 May 2000 / Revised: 27 October 2000 / Accepted: 30 October 2000  相似文献   

11.
Abstract. Satellite imagery provides a unique tool for monitoring seasonal dynamics of the Earth's vegetation on a global scale. The combination of the normalized difference vegetation index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR) with a daily repeat cycle and 1 km spatial resolution makes weather satellites operated by the National Oceanic and Atmospheric Administration very well suited for deriving broad‐scale phenological metrics from satellite images. In this paper, similarities and differences between remotely sensed phenological studies and traditional symphenological studies conducted by ground‐based observations are summarized. Finally, major shortcomings in deriving phenological metrics from NDVI time series are discussed.  相似文献   

12.
ABSTRACT: BACKGROUND: Malaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia. METHODS: In this study seasonal auto regressive integrated moving average (SARIMA) models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST), vegetation indices (NDVI and EVI), and actual evapotranspiration (ETa) with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series. RESULTS: Malaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa) at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates. CONCLUSIONS: Malaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public health decisions.  相似文献   

13.
Information on the spatial distribution and composition of biological communities is essential in designing effective strategies for biodiversity conservation and management. Reliable maps of species richness across the landscape can be useful tools for these purposes. Acquiring such information through traditional survey techniques is costly and logistically difficult. The kriging interpolation method has been widely used as an alternative to predict spatial distributions of species richness, as long as the data are spatially dependent. However, even when this requirement is met, researchers often have few sampled sites in relation to the area to be mapped. Remote sensing provides an inexpensive means to derive complete spatial coverage for large areas and can be extremely useful for estimating biodiversity. The aim of this study was to combine remotely sensed data with kriging estimates (hybrid procedures) to evaluate the possibility of improving the accuracy of tree species richness maps. We did this through the comparison of the predictive performance of three hybrid geostatistical procedures, based on tree species density recorded in 141 sampling quadrats: co-kriging (COK), kriging with external drift (KED), and regression kriging (RK). Reflectance values of spectral bands, computed NDVI and texture measurements of Landsat 7 TM imagery were used as ancillary variables in all methods. The R2 values of the models increased from 0.35 for ordinary kriging to 0.41 for COK, and from 0.39 for simple regression estimates to 0.52 and 0.53 when using simple KED and RK, respectively. The R2 values of the models also increased from 0.60 for multiple regression estimates to 0.62 and 0.66 when using multiple KED and RK, respectively. Overall, our results demonstrate that these procedures are capable of greatly improving estimation accuracy, with multivariate RK being clearly superior, because it produces the most accurate predictions, and because of its flexibility in modeling multivariate relationships between tree richness and remotely sensed data. We conclude that this is a valuable tool for guiding future efforts aimed at conservation and management of highly diverse tropical forests.  相似文献   

14.
The world''s population is predicted to exceed nine billion by 2050 and there is increasing concern about the capability of agriculture to feed such a large population. Foresight studies on food security are frequently based on crop yield trends estimated from yield time series provided by national and regional statistical agencies. Various types of statistical models have been proposed for the analysis of yield time series, but the predictive performances of these models have not yet been evaluated in detail. In this study, we present eight statistical models for analyzing yield time series and compare their ability to predict wheat yield at the national and regional scales, using data provided by the Food and Agriculture Organization of the United Nations and by the French Ministry of Agriculture. The Holt-Winters and dynamic linear models performed equally well, giving the most accurate predictions of wheat yield. However, dynamic linear models have two advantages over Holt-Winters models: they can be used to reconstruct past yield trends retrospectively and to analyze uncertainty. The results obtained with dynamic linear models indicated a stagnation of wheat yields in many countries, but the estimated rate of increase of wheat yield remained above 0.06 t ha−1 year−1 in several countries in Europe, Asia, Africa and America, and the estimated values were highly uncertain for several major wheat producing countries. The rate of yield increase differed considerably between French regions, suggesting that efforts to identify the main causes of yield stagnation should focus on a subnational scale.  相似文献   

15.
The leaf, which is a crucial indicator for evaluating crop status, plays an important role in plants' functions. Determining and monitoring leaf parameters can facilitate the detection and estimation of crop yield, which is essential for food security. Crop monitoring by remote sensing technology is critical to support crop production, especially over large scales. In this study, we developed a methodology to estimate leaf parameters based entirely on vegetation indices (VIs) from remotely sensed imagery in wheat under different management practices. Therefore, the current study aimed to examine the utility of VIs calculated from the sentinel-2 data in estimating the Leaf area index (LAI) and leaf parameters at wheat farms using machine learning algorithms. Leaf parameters included leaf dry weight (LDW), specific leaf area (SLA) and leaf specific weight (SLW), and machine learning algorithms were SVM (support vector machine), ANN (artificial neural network) and DNN (deep neural network). Leaf parameters were measured at several developmental stages of wheat in two contrasting environments in the southern Iran. The results demonstrated that the DNN algorithm could efficiently predict leaf parameters in the southern Iran with an overall precision of >72%, which assessed the potential of employing DNN to achieve the temporal and spatial distribution data of wheat based on the Sentinel-2 imagery. The validation of the DNN model generally showed high accuracy (R = 0.80, RMSE = 1.19, and MAE = 0.98) between observed and estimated LAI values when this model was used. NDVI was also highly sensitive to wheat LDW and SLA parameters, with a good correlation between field measurements and those predicted by the DNN model from sentinel-2 imagery, with the R values of 0.66 and 0.85, respectively. Further, NDVI and PVI (Perpendicular Vegetation Index) were linearly correlated with SLW across both temporal and spatial scales (R = 0.79). Among VIs considered from sentinel-2 imagery to predict wheat leaf parameters, NDVI was more sensitive than other VIs. This research, thus, indicated that using sentinel-2 data within a DNN model could provide a comparatively precise and robust prediction of leaf parameters and yield valuable insights into crop management with high temporal and spatial accuracy.  相似文献   

16.
Many studies of mammalian herbivores have employed remotely sensed vegetation greenness, in the form of Normalized Difference Vegetation Index (NDVI) as a proxy for forage quality. The assumption that reflected greenness represents forage quality often goes untested, and limited data exist on the relationships between remotely sensed and traditional forage nutrient indicators. We provide the first study connecting NDVI and forage nutrient indicators within a free-ranging African herbivore ecosystem. We examined the relationships between fecal nutrient levels (nitrogen and phosphorus), forage nutrient levels, body condition, and NDVI for African buffalo (Syncerus caffer) in a South African savanna ecosystem over a 2-year period (2001 and 2002). We used an information-theoretic approach to rank models of fecal nitrogen (Nf) and phosphorus (Pf) as functions of geology, season, and NDVI in each year separately. For each year, the highest ranked models for Nf accounted for 61% and 65% of the observed variance, and these models included geology, season, and NDVI. The top-ranked model for Pf in 2001, although capturing 54% of the variability, did not include NDVI. In 2002, we could not identify a top ranking model for phosphorus (i.e., all models were within 2 AICc of each other). Body condition was most highly correlated ( ; P ≤ 0.001) with NDVI at a 1 month time lag and with Nf at a 3 months time lag ( ; P ≤ 0.001), but was not significantly correlated with Pf. Our findings suggest that NDVI can be used to index nitrogen content of forage and is correlated with improved body condition in African buffalo. Thus, NDVI provides a useful means to assess forage quality where crude protein is a limiting resource. We found that NDVI accounted for more than a seasonal effect, and in a system where standing biomass may be high but of low quality, understanding available nutrients is useful for management. © 2012 The Wildlife Society.  相似文献   

17.
基于叶面积指数反演的区域冬小麦单产遥感估测   总被引:6,自引:0,他引:6  
利用定量遥感技术反演的叶面积指数(LAI)在中国北方黄淮海地区典型县市进行冬小麦单产预测研究.为提高数据质量和减少估产误差,利用Savitzky-Golay滤波技术降低云对NDVI数据的影响及数据缺失;通过冬小麦实测LAI进行时序内插,模拟得到实测点每日冬小麦LAI,继而获得实测点主要生育时期平均LAI;在此基础上,建立了冬小麦主要生育时期平均LAI与作物单产关系模型,改变目前利用生育时期内某一时间点LAI代替整个生育时期LAI的方法;在模型择优基础上,得到最佳遥感估产关键期--开花期LAI与单产统计模型;最后,利用MODIS-NDVI经验模型反演得到的开花期平均LAI进行2008年冬小麦单产预测.结果表明:与地面实测的冬小麦单产相比,研究区估产平均相对误差为1.21%,RMSE达到257.33 kg·hm-2,可以满足大范围估产的要求.利用上述方法可以在研究区冬小麦收获前20~30 d进行准确的单产估计.  相似文献   

18.
We studied the aboveground net primary productivity (ANPP) of wheat crops in the Argentine Pampas. Our specific objectives were to determine (a) the response of ANPP to changes in water availability (b) the regional patterns of ANPP and (c) the interannual variability and environmental controls of ANPP. We used ground and satellite data to address these questions. Wheat ANPP was calculated as the ratio between grain yield and harvest index. We developed a simple model that took into account environmental and genetic improvement effects upon harvest index. We used the normalized difference vegetational index (NDVI) as a surrogate for ANPP at the county level. Straight-line regression models were fitted to single-year and average values of ANPP and precipitation to derive temporal and spatial models for wheat. For grasslands, we used spatial and temporal models already published. At any given site, there was no difference between modeled wheat and grassland average ANPP. The response of ANPP to changes in interannual water availability decreased along the precipitation gradient when vegetation structure (for example, species composition, density, and total cover) was held constant (wheat crops). Wheat ANPP and total production variability, estimated from remotely sensed data, decreased as mean annual precipitation (MAP) increased. The percentage of soils without drainage problems was the variable that explained most of the wheat ANPP spatial variability as shown by stepwise linear regression. Precipitation variability accounted for 49% of wheat ANPP variability. Remotely sensed estimates of ANPP variability showed lower and wheat ANPP higher temporal variability than annual precipitation.  相似文献   

19.
Pulses of aboveground net primary productivity (ANPP) in response to discrete precipitation events are an integral feature of ecosystem functioning in arid and semi-arid lands. Yet, the usefulness of nonlinear, ecohydrological pulse response functions to predict regional-scale patterns of annual ANPP at decadal scales remains unclear. Here, we assessed how different pulse response (PR) models compete with simple linear statistical models to capture variability in yearly integrated values of Normalized Difference Vegetation Index (NDVIint), a remotely sensed proxy of annual ANPP. We examined 24-year-long time series of NDVIint calculated from Advanced Very High Resolution Radiometer (AVHRR) NDVI for 350,000 km2 of tropical grasslands in northern Australia. Based on goodness-of-fit statistics, PR models clearly outperformed statistical models when parameters were optimized for each site but all models showed the same error magnitude when all sites were combined in ensemble simulations or when the models were evaluated outside the calibration period. PR models were less biased and their performance did not deteriorate in the driest areas compared to linear models. Increasing the complexity of PR models to provide a better representation of soil water balance and its feedback with plant growth did not improve model performance in ensemble simulations. When error magnitude, bias, and sensitivity to parameter uncertainty were all considered, we concluded that a low-dimensional PR model was the most robust to capture NDVIint variability. This study shows the potential of long time series of AVHRR NDVI to benchmark process-oriented models of interannual variability of NDVIint in water-controlled ecosystems. This opens new avenues to examine at the global scale and over several decades the causal relationships between climate and leaf dynamics in the grassland biome.  相似文献   

20.
Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute''s (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号