首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.  相似文献   

3.
Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (Rev.1 and M5‐90) have several drawbacks. The first involves residual virulence for animals and humans and the second is the inability to differentiate natural infection from that caused by vaccination. Therefore, Brucella melitensis 16M hfq mutant (16MΔhfq) was constructed to overcome these drawbacks. Similarly to Rev.1 and M5‐90, 16MΔhfq reduces survival in macrophages and mice and induces strong protective immunity in BALB/c mice. Moreover, these vaccines elicit anti‐Brucella‐specific IgG1 and IgG2a subtype responses and induce secretion of gamma interferon and interleukin‐4. The Hfq antigen also allows serological differentiation between infected and vaccinated animals. These results show that 16MΔhfq is an ideal live attenuated vaccine candidate against virulent Brucella melitensis 16M infection. It will be further evaluated in sheep.  相似文献   

4.
Hfq is a bacterial RNA chaperone involved in the riboregulation of diverse genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Proteus mirabilis to effectively colonize the bladder and kidneys in a murine urinary tract infection (UTI) model and to establish burned wound infection of the rats. In this regard, we found the hfq mutant induced higher IL-8 and MIF levels of uroepithelial cells and displayed reduced intra-macrophage survival. The loss of hfq affected bacterial abilities to handle H2O2 and osmotic pressures and to grow at 50°C. Relative to wild-type, the hfq mutant had reduced motility, fewer flagella and less hemolysin expression and was less prone to form biofilm and to adhere to and invade uroepithelial cells. The MR/P fimbrial operon was almost switched to the off phase in the hfq mutant. In addition, we found the hfq mutant exhibited an altered outer membrane profile and had higher RpoE expression, which indicates the hfq mutant may encounter increased envelope stress. With the notion of envelope disturbance in the hfq mutant, we found increased membrane permeability and antibiotic susceptibilities in the hfq mutant. Finally, we showed that Hfq positively regulated the RpoS level and tolerance to H2O2 in the stationary phase seemed largely mediated through the Hfq-dependent RpoS expression. Together, our data indicate that Hfq plays a critical role in P. mirabilis to establish UTIs by modulating stress responses, surface structures and virulence factors. This study suggests Hfq may serve as a scaffold molecule for development of novel anti-P. mirabilis drugs and P. mirabilis hfq mutant is a vaccine candidate for preventing UTIs.  相似文献   

5.
6.
7.

Background  

The hfq gene is conserved in a wide variety of bacteria and Hfq is involved in many cellular functions such as stress responses and the regulation of gene expression. It has also been reported that Hfq is involved in bacterial pathogenicity. However, it is not clear whether Hfq regulates virulence in Vibrio parahaemolyticus. To evaluate this, we investigated the effect of Hfq on the expression of virulence-associated genes including thermostable direct hemolysin (TDH), which is considered to be an important virulence factor in V. parahaemolyticus, using an hfq deletion mutant.  相似文献   

8.
9.
10.
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.  相似文献   

11.

Background

The RNA-binding protein Hfq is involved in stress and virulence of several pathogens, probably due to its role as mediator in small RNA (sRNA)-mRNA interactions. In this study, we investigate the function of Hfq in the Gram-positive pathogen Staphylococcus aureus, by constructing hfq null mutant derivatives.

Results

We report that unexpectedly, in S. aureus, Hfq does not seem to play a crucial role in stress response, RNAIII or spa mRNA quantity and exoprotein expression, as tested in three virulent genetic backgrounds. Moreover, a global analysis of the RN6390 hfq mutant, which tests ~ 2000 phenotypes, supports our results concerning the non-implication of Hfq in stress response, and shows that Hfq is also not involved in resistance to several chemical agents and antibiotics and does not seem to be implicated in metabolic pathways.

Conclusion

Our data suggest that although sRNA-mRNA interactions in S. aureus are decisive for gene expression regulation, they do not require the RNA-chaperone protein Hfq. These interactions possibly require an RNA-chaperone protein other than Hfq, which remains to be found.  相似文献   

12.
13.
14.
15.
Brucella melitensis is a facultative intracellular pathogen. An operon composed of BMEI0066, which encodes a two-component response regulator CenR, and BMEI0067, which encodes a cAMP-dependent protein kinase regulatory subunit, has been predicted to exist in many bacterial species. However, little is known about the function of this operon. In order to characterize this operon and assess its role in virulence, we constructed a marked deletion mutant of BMEI0066. The mutant was less able to withstand hyperosmotic conditions than wild-type (16M), but showed no significant difference with 16M when challenged by H2O2. The mutant also showed increased sensitivity to elevated temperature (42°C) and a reduced survival ratio under acidic conditions compared with 16M. The mutant failed to replicate in cultured murine macrophages and was rapidly cleared from the spleens of experimentally infected BALB/c mice. These findings suggest that these operon products make an important contribution to pathogenesis in mice, probably by allowing B. melitensis to adapt to the harsh environment encountered within host macrophages.  相似文献   

16.
Gram‐negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σE envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two‐component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram‐negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σE envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σE and Cpx responses in non‐pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σE response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K‐12. Cpx pathway activation resulted in part from overexpression of the bundle‐forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.  相似文献   

17.
18.
19.
Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. The success of Brucella as pathogen relies in its ability to adapt to the harsh environmental conditions found in mammalian hosts. One of its main adaptations is the induction of the expression of different genes involved in respiration at low oxygen tension. In this report we describe a regulatory network involved in this adaptation. We show that Brucella abortus PrrBA is a functional two‐component signal transduction system that responds to the redox status and acts as a global regulator controlling the expression of the regulatory proteins NtrY, FnrN and NnrA, which are involved in the adaptation to survive at low oxygen tension. We also show that the two‐component systems PrrBA and NtrYX co‐ordinately regulate the expression of denitrification and high‐affinity cytochrome oxidase genes. Strikingly, a double mutant strain in the prrB and ntrY genes is severely impaired in growth and virulence, while the ntrY and prrB single mutant strains are similar to wild‐type B. abortus. The proposed regulatory network may contribute to understand the mechanisms used by Brucella for a successful adaptation to its replicative niche inside mammalian cells.  相似文献   

20.
Brucella quorum sensing has been described as an important regulatory system controlling crucial virulence determinants such as the VirB type IV secretion system and the flagellar genes. However, the basis of quorum sensing, namely the production of autoinducers in Brucella has been questioned. Here, we report data obtained from the use of a genetic tool allowing the in situ detection of long-chain N-acyl-homoserine lactones (AHL) activity at single bacterium level in Brucella melitensis. These data are consistent with an intrinsic production of AHL by B. melitensis in low concentration both during in vitro growth and macrophage infection. Moreover, we identified a protein, named AibP, which is homologous to the AHL-acylases of various bacterial species. In vitro and during infection, expression of aibP coincided with a decrease in endogenous AHL activity within B. melitensis, suggesting that AibP could efficiently impair AHL accumulation. Furthermore, we showed that deletion of aibP in B. melitensis resulted in enhanced virB genes expression and VirB8 production as well as in a reduced flagellar genes expression and production of FlgE (hook protein) and FliC (flagellin) in vitro. Altogether, these results suggest that AHL-dependent quorum sensing and AHL-quorum quenching coexist in Brucella, at least to regulate its virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号