首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
6.
Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the (1248)SFYYS(1252) motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling.  相似文献   

7.
8.
The ubiquitin-proteasome system has recently been implicated in various pathologies including neurodegenerative diseases and cancer. In light of this, techniques for studying the regulatory mechanism of this system are essential to elucidating the cellular and molecular processes of the aforementioned diseases. The use of hemagglutinin derived ubiquitin probes outlined in this paper serves as a valuable tool for the study of this system. This paper details a method that enables the user to perform assays that give a direct visualization of deubiquitinating enzyme activity. Deubiquitinating enzymes control proteasomal degradation and share functional homology at their active sites, which allows the user to investigate the activity of multiple enzymes in one assay. Lysates are obtained through gentle mechanical cell disruption and incubated with active site directed probes. Functional enzymes are tagged with the probes while inactive enzymes remain unbound. By running this assay, the user obtains information on both the activity and potential expression of multiple deubiquitinating enzymes in a fast and easy manner. The current method is significantly more efficient than using individual antibodies for the predicted one hundred deubiquitinating enzymes in the human cell.  相似文献   

9.
10.
11.
Peptidomimetics hold a great promise as therapeutic agents for neurodegenerative disorders. We previously described a Nerve Growth Factor (NGF)-like peptide, now named BB14, which was found to act as a strong TrkA agonist and to be effective in the sciatic nerve injury model of neuropathic pain. In this report we present the effects of BB14 in reducing reactive astrocytosis and reverting neuroplastic changes of the glutamate/GABAergic circuitry in the lumbar spinal cord following spared nerve injury (SNI) of the sciatic nerve. Immunohistochemical analysis of spinal cord sections revealed that SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) responses, indicative of reactive gliosis. These changes were paralleled by (i) decreased glial aminoacid transporters (GLT1 and GlyT1) and increased levels of (ii) neuronal glutamate transporter EAAC1, (iii) neuronal vesicular GABA transporter (vGAT) and (iv) the GABAergic neuron marker GAD65/67. A remarkable increase of the Glutamate/GABA ratio and the reduction of glutathione (GSH) levels were also indicative of modifications of glial function in neuroprotection. All these molecular changes were found to be linked to an alteration of endogenous NGF metabolism, as demonstrated by decreased levels of mature NGF, increase of proNGF and increased activity of NGF-degrading methallo-proteinases (MMPs). Biochemical alterations and SNI-related neuropathic behavior, characterized by allodynia and hyperalgesia, were reversed by 7-days i.t. administration of the NGF-like peptide BB14, as well as by increasing endogenous NGF levels by i.t. infusion of GM6001, a MMPs inhibitor. All together, while confirming the correlation between reactive astrogliosis and perturbation of synaptic circuitry in the SNI model of peripheral nerve injury, these data strongly support the beneficial effect of BB14 in reducing reactive astrogliosis and restoring synaptic homeostasis under pathological conditions linked to alteration of NGF availability and signaling, thereby suggesting a potential role of BB14 as a therapeutic agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号