首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Dental agenesis is the most common, often heritable, developmental anomaly in humans. Although WNT10A gene mutations are known to cause rare syndromes associated with tooth agenesis, including onycho-odontodermal dysplasia (OODD), Schöpf-Schulz-Passarge syndrome (SSPS), hypohidrotic ectodermal dysplasia (HED), and more than half of the cases of isolated oligodontia recently, the genotype-phenotype correlations and the mode of inheritance of WNT10A mutations remain unclear. The phenotypic expression with WNT10A mutations shows a high degree of variability, suggesting that other genes might function with WNT10A in regulating ectodermal organ development. Moreover, the involvement of mutations in other genes, such as EDA, which is also associated with HED and isolated tooth agenesis, is not clear. Therefore, we hypothesized that EDA mutations interact with WNT10A mutations to play a role in tooth agenesis. Additionally, EDA, EDAR, and EDARADD encode signaling molecules in the Eda/Edar/NF-κB signaling pathways, we also checked EDAR and EDARADD in this study.

Methods

WNT10A, EDA, EDAR and EDARADD were sequenced in 88 patients with isolated oligodontia and 26 patients with syndromic tooth agenesis. The structure of two mutated WNT10A and two mutated EDA proteins was analyzed.

Results

Digenic mutations of both WNT10A and EDA were identified in 2 of 88 (2.27%) isolated oligodontia cases and 4 of 26 (15.38%) syndromic tooth agenesis cases. No mutation in EDAR or EDARADD gene was found.

Conclusions

WNT10A and EDA digenic mutations could result in oligodontia and syndromic tooth agenesis in the Chinese population. Moreover, our results will greatly expand the genotypic spectrum of tooth agenesis.  相似文献   

2.
Tooth agenesis is the most common developmental dental anomaly. Absence of one or two permanent teeth is found in the majority of affected subjects. Very few patients suffer severe tooth agenesis. Recent studies revealed that WNT10A gene mutations caused syndromic and isolated severe tooth agenesis. In this study, to determine the contribution of WNT10A variants in different severities of tooth agenesis, we investigated the association between WNT10A variants and non-syndromic tooth agenesis in a Chinese population consisting of 505 tooth agenesis patients and 451 normal controls. Twenty-three novel non-synonymous variants were identified. WNT10A variants were detected in 15.8 % (75/474) of patients with 1–3 missing teeth and 51.6 % (16/31) of patients with 4 or more missing teeth. As compared with a frequency of 3.1 % in individuals with full dentition, variant allele frequencies were significantly elevated in both groups with tooth agenesis (p values of 1.00 × 10?6 and 3.89 × 10?23, respectively). Our findings showed that WNT10A variants were associated with non-syndromic tooth agenesis from mild to severe tooth agenesis, and the more severe tooth agenesis, the stronger association. Biallelic genotypes of WNT10A variants may have a pathogenic effect on tooth development. Presence of a single variant allele would be predisposing for causation with low penetrance. Together with WNT10A variant, there should be other genetic or environmental factors leading to biallelic variant-related variable clinical manifestations and single allele variant-related low penetrance. The frequent missing tooth positions in the WNT10A-related cases were consistent with that in the general population, suggesting WNT10A plays a critically important role in the etiology of general tooth agenesis.  相似文献   

3.
Congenital tooth agenesis is caused by mutations in the MSX1, PAX9, WNT10A, or AXIN2 genes. Here, we report a Japanese family with nonsyndromic tooth agenesis caused by a novel nucleotide substitution in the intronic region between exons 1 and 2 of the MSX1 gene. Because the mutation is located 9 bp before exon 2 (c.452-9G>A), we speculated that the nucleotide substitution would generate an abnormal splice site. Using cDNA analysis of an immortalized patient blood cell, we confirmed that an additional 7-nucleotide sequence was inserted at the splice junction between exons 1 and 2 (c.451_452insCCCTCAG). The consequent frameshift generated a homeodomain-truncated MSX1 (p.R151fsX20). We then studied the subcellular localization of truncated MSX1 protein in COS cells, and observed that it had a whole cell distribution more than a nuclear localization, compared to that of wild-type protein. This result suggests a deletion of the nuclear localization signal, which is mapped to the MSX1 homeodomain. These results indicate that this novel intronic nucleotide substitution is the cause of tooth agenesis in this family. To date, most MSX1 variants isolated from patients with tooth agenesis involve single amino acid substitutions in the highly conserved homeodomain or deletion mutants caused by frameshift or nonsense mutations. We here report a rare case of an intronic mutation of the MSX1 gene responsible for human tooth agenesis. In addition, the missing tooth patterns were slightly but significantly different between an affected monozygotic twin pair of this family, showing that epigenetic or environmental factors also affect the phenotypic variations of missing teeth among patients with nonsyndromic tooth agenesis caused by an MSX1 haploinsufficiency.  相似文献   

4.
5.
Inherited dentin defects are classified into three types of dentinogenesis imperfecta (DGI) and two types of dentin dysplasia (DD). The genetic etiology of DD-I is unknown. Defects in dentin sialophosphoprotein (DSPP) cause DD type II and DGI types II and III. DGI type I is the oral manifestation of osteogenesis imperfecta (OI), a systemic disease typically caused by defects in COL1A1 or COL1A2. Mutations in MSX1, PAX9, AXIN2, EDA and WNT10A can cause non-syndromic familial tooth agenesis. In this study a simplex pattern of clinical dentinogenesis imperfecta juxtaposed with a dominant pattern of hypodontia (mild tooth agenesis) was evaluated, and available family members were recruited. Mutational analyses of the candidate genes for DGI and hypodontia were performed and the results validated. A spontaneous novel mutation in COL1A2 (c.1171G>A; p.Gly391Ser) causing only dentin defects and a novel mutation in PAX9 (c.43T>A; p.Phe15Ile) causing hypodontia were identified and correlated with the phenotypic presentations in the family. Bone radiographs of the proband’s dominant leg and foot were within normal limits. We conclude that when no DSPP mutation is identified in clinically determined isolated DGI cases, COL1A1 and COL1A2 should be considered as candidate genes. PAX9 mutation p.Phe15Ile within the N-terminal β-hairpin structure of the PAX9 paired domain causes tooth agenesis.  相似文献   

6.
Nonsyndromic hypodontia is a congenital absence of less than six permanent teeth, with a most common subtype maxillary lateral incisor agenesis (MLIA). Mutations in several genes have been described in severe tooth agenesis. The aim of this study was to search for the variants in wingless-type MMTV-integration site family member (WNT10A), paired box 9 (PAX9) and axis inhibitor 2 (AXIN2) genes, and investigate their potential role in the pathogenesis of non-syndromic hypodontia. Clinical examination and panoramic radiograph were performed in the cohort of 60 unrelated Slovak patients of Caucasian origin with nonsyndromic hypodontia including 37 MLIA cases and 48 healthy controls. Genomic DNA was isolated from buccal swabs and Sanger sequencing of WNT10A, PAX9 and AXIN2 was performed. Altogether, we identified 23 single-nucleotide variants, of which five were novel. We have found three rare nonsynonymous variants in WNT10A (p.Gly165Arg; p.Gly213Ser and p.Phe228Ile) in eight (13.33%) of 60 patients. Analysis showed potentially damaged WNT10A variant p.Phe228Ile predominantly occurred only in MLIA patients, and with a dominant form of tooth agenesis (odds ratio \(({\hbox {OR}}_{\mathrm{dom}}) = 9.841\); \(P=0.045\); 95% confidence interval (CI) 0.492–196.701; \({\hbox {OR}}_{\mathrm{rec}} = 0.773\); \(P =1.000\); 95% CI 0.015–39.877). In addition, the WNT10A variant p.Phe228Ile showed a trend associated with familial nonsyndromic hypodontia (\(P =0.024\); OR = 1.20; 95% CI 0.97–1.48). After Bonferroni correction, these effects remained with borderline tendencies. Using a 3D WNT10A protein model, we demonstrated that the variant Phe228Ile changes the protein secondary structure. In PAX9 and AXIN2, common variants were detected. Our findings suggest that the identified WNT10A variant p.Phe228Ile could represent risk for the inherited nonsyndromic hypodontia underlying MLIA. However, further study in different populations is required.  相似文献   

7.
Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs8], c.1779dupT [p.Glu594], and c.2224_2225dupTT [p.Leu742Phefs7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein’s signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/β-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics.  相似文献   

8.
9.
Since MSX1 and PAX9 are linked to the pathogenesis of nonsyndromic tooth agenesis, we performed detailed mutational analysis of these two genes sampled from Japanese patients. We identified two novel MSX1 variants with an amino acid substitution within the homeodomain; Thr174Ile (T174I) from a sporadic hypodontia case and Leu205Arg (L205R) from a familial oligodontia case. Both the Thr174 and Leu205 residues in the MSX1 homeodomain are highly conserved among different species. To define possible roles of mutations at these amino acids in the pathogenesis of nonsyndromic tooth agenesis, we performed several functional analyses. It has been demonstrated that MSX1 plays a pivotal role in hard tissue development as a suppressor for mesenchymal cell differentiation. To evaluate the suppression activity of the variants in mesenchymal cells, we used the myoD-promoter, which is one of convenient reporter assay system for MSX1. Although the gene products of these MSX1 variants are stable and capable of normal nuclear localization, they do not suppress myoD-promoter activity in differentiated C2C12 cells. To clarify the molecular mechanisms underlying our results, we performed further analyses including electrophoretic mobility shift assays, and co-immunoprecipitation assays to survey the molecular interactions between the mutant MSX1 proteins and the oligonucleotide DNA with MSX1 consensus binding motif or EZH2 methyltransferase. Since EZH2 is reported to interact with MSX1 and regulate MSX1 mediated gene suppression, we hypothesized that the T174I and L205R substitutions would impair this interaction. We conclude from the results of our experiments that the DNA binding ability of MSX1 is abolished by these two amino acid substitutions. This illustrates a causative role of the T174I and L205R MSX1 homeodomain mutations in tooth agenesis, and suggests that they may influence cell proliferation and differentiation resulting in lesser tooth germ formation in vivo.  相似文献   

10.
Even though selective tooth agenesis is the most common developmental anomaly of human dentition, its genetic background still remains poorly understood. To date, familial as well as sporadic forms of both hypodontia and oligodontia have been associated with mutations or polymorphisms of MSX1, PAX9, AXIN2 and TGFa, whose protein products play a crucial role in odontogenesis. In the present report we described a novel mutation of MSX1, which might be responsible for the lack of 14 permanent teeth in our proband. However, this c.581C>T transition, localized in a highly conserved homeobox sequence of MSX1, was identified also in 2 healthy individuals from the proband's family. Our finding suggests that this transition might be the first described mutation of MSX1 that might be responsible for oligodontia and showing incomplete penetrance. It may also support the view that this common anomaly of human dentition might be an oligogenic trait caused by simultaneous mutations of different genes.  相似文献   

11.

INTRODUCTION:

Non-syndromic tooth agenesis is a congenital anomaly with significant medical, psychological, and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes.

AIM OF THE STUDY:

The aim of this study was to test whether MSX1 671 T > C gene variant was involved in etiology of non-syndromic tooth agenesis in Raichur patients.

MATERIALS AND METHODS:

Blood samples were collected with informed consent from 50 subjects having non-syndromic tooth agenesis and 50 controls. Genomic deoxyribonucleic acid (DNA) was extracted from the blood samples, polymerase chain reaction (PCR) was performed, and restriction fragment length polymorphism (RFLP) was performed for digestion products that were evaluated.

RESULTS:

The results showed positive correlation between MSX1671 T > C gene variant and non-syndromic tooth agenesis in Raichur patients.

CONCLUSION:

MSX1 671 T > C gene variant may be a good screening marker for non-syndromic tooth agenesis in Raichur patients.  相似文献   

12.
13.
《Endocrine practice》2019,25(3):230-241
Objective: Osteogenesis imperfecta (OI) is a group of heritable fragile bone diseases, and the majority are caused by pathogenic variants in the COL1A1 and COL1A2 genes. We sought to identify the genetic causes and phenotypes of OI in Chinese patients without COL1A1 or COL1A2 mutations.Methods: Twenty-three patients who were diagnosed with sporadic OI but did not carry COL1A1/2 mutations were recruited, and their genomic DNA was analyzed using targeted next-generation sequencing of rare OI-related genes. The resulting damaging mutations in the probands and their parents were verified using Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment was evaluated in proband 1.Results: Compound heterozygous variants in the WNT1 and TMEM38B genes were identified in proband 1 and proband 2, respectively. A heterozygous mutation in the P4HB gene was identified in proband 3, and a hemizygous mutation in PLS3 was identified in proband 4. The unaffected parents of the probands (except the father of proband 4) with mutations in the WNT1, TMEM38B, and PLS3 genes were heterozygous carriers of each of the variants, respectively. Notably, proband 3 had the characteristic exophthalmos, flat nasal bridge and flat, wide forehead. None of the patients presented with dentinogenesis imperfecta or hearing loss. Furthermore, bisphosphonates exerted beneficial effects on proband 1, who carried the WNT1 mutations, by increasing bone mineral density Z-score, reshaping the compressed vertebrae and decreasing the fracture risk.Conclusion: We identified novel mutations and expanded the spectrum of phenotypes and genotypes of the extremely rare disorder OI.Abbreviations: BMD = bone mineral density; MIM = Mendelian Inheritance in Man; OI = osteogenesis imperfecta; PDI = protein disulfide isomerase  相似文献   

14.
M Miyagawa  SY Nishio  S Usami 《PloS one》2012,7(8):e40366
Screening for gene mutations in CDH23, which has many exons, has lagged even though it is likely to be an important cause for hearing loss patients. To assess the importance of CDH23 mutations in non-syndromic hearing loss, two-step screening was applied and clinical characteristics of the patients with CDH23 mutations were examined in this study. As a first screening, we performed Sanger sequencing using 304 probands compatible with recessive inheritance to find the pathologic mutations. Twenty-six possible mutations were detected to be pathologic in the first screening. For the second screening, using the probes for these 26 mutations, a large cohort of probands (n = 1396) was screened using Taqman amplification-based mutation analysis followed by Sanger sequencing. The hearing loss in a total of 52 families (10 homozygous, 13 compound heterogygous, and 29 heterozygous) was found to be caused by the CDH23 mutations. The majority of the patients showed congenital, high frequency involved, progressive hearing loss. Interestingly, some particular mutations cause late onset moderate hearing loss. The present study is the first to demonstrate the prevalence of CDH23 mutations among non-syndromic hearing loss patients and indicated that mutations of the CDH23 gene are an important cause of non-syndromic hearing loss.  相似文献   

15.
16.
Odonto-onycho-dermal dysplasia (OODD), a rare autosomal-recessive inherited form of ectodermal dysplasia including severe oligodontia, nail dystrophy, palmoplantar hyperkeratosis, and hyperhidrosis, was recently shown to be caused by a homozygous nonsense WNT10A mutation in three consanguineous Lebanese families. Here, we report on 12 patients, from 11 unrelated families, with ectodermal dysplasia caused by five previously undescribed WNT10A mutations. In this study, we show that (1) WNT10A mutations cause not only OODD but also other forms of ectodermal dysplasia, reaching from apparently monosymptomatic severe oligodontia to Schöpf-Schulz-Passarge syndrome, which is so far considered a unique entity by the findings of numerous cysts along eyelid margins and the increased risk of benign and malignant skin tumors; (2) WNT10A mutations are a frequent cause of ectodermal dysplasia and were found in about 9% of an unselected patient cohort; (3) about half of the heterozygotes (53.8%) show a phenotype manifestation, including mainly tooth and nail anomalies, which was not reported before in OODD; and (4) heterozygotes show a sex-biased manifestation pattern, with a significantly higher proportion of tooth anomalies in males than in females, which may implicate gender-specific differences of WNT10A expression.  相似文献   

17.
The mutation spectrum of deafness genes may vary in different ethnical groups. In this study, we investigated the genetic etiology of nonsyndromic deafness in four consanguineous and two multiplex Uyghur families in which mutations in common deafness genes GJB2, SLC26A4 and MT-RNR1 were excluded. Targeted next-generation sequencing of 97 deafness genes was performed in the probands of each family. Novel pathogenic mutations were identified in four probands including the p.L416R/p.A438T compound heterozygous mutations in TMC1, the homozygous p.V1880E mutation in MYO7A, c.1238delT frameshifting deletion in PCDH15 and c.9690+1G>A splice site mutation in MYO15A. Co-segregation of the mutations and the deafness were confirmed within each family by Sanger sequencing. No pathogenic mutations were identified in one multiplex family and one consanguineous family. Our study provided a useful piece of information for the genetic etiology of deafness in Uyghurs.  相似文献   

18.
Shovel shape of upper incisors is a common characteristic in Asian and Native American populations but is rare or absent in African and European populations. Like other common dental traits, genetic polymorphisms involved in the tooth shoveling have not yet been clarified. In ectodysplasin A receptor (EDAR), where dysfunctional mutations cause hypohidrotic ectodermal dysplasia, there is a nonsynonymous-derived variant, 1540C (rs3827760), that has a geographic distribution similar to that of the tooth shoveling. This allele has been recently reported to be associated with Asian-specific hair thickness. We aimed to clarify whether EDAR 1540C is also associated with dental morphology. For this purpose, we measured crown diameters and tooth-shoveling grades and analyzed the correlations between the dental traits and EDAR genotypes in two Japanese populations, inhabitants around Tokyo and in Sakishima Islands. The number of EDAR 1540C alleles in an individual was strongly correlated with the tooth-shoveling grade (p = 7.7 × 10−10). The effect of the allele was additive and explained 18.9% of the total variance in the shoveling grade, which corresponds to about one-fourth of the heritability of the trait reported previously. For data reduction of individual-level metric data, we applied a principal-component analysis, which yielded PC1-4, corresponding to four patterns of tooth size; this result implies that multiple factors are involved in dental morphology. The 1540C allele also significantly affected PC1 (p = 4.9 × 10−3), which denotes overall tooth size, and PC2 (p = 2.6 × 10−3), which denotes the ratio of mesiodistal diameter to buccolingual diameter.  相似文献   

19.
20.
Fraser syndrome (FS) is a rare autosomal recessive inherited disorder characterized by cryptophthalmos, laryngeal defects and oral clefting, mental retardation, syndactyly, and urogenital defects. To date, 250 patients have been described in the literature. Mutations in the FRAS1 gene on chromosome 4 have been identified in patients with Fraser syndrome. So far, 26 mutations have been identified, most of them are truncating mutations. The mutational spectrum includes nucleotide substitutions, splicing defects, a large insertion, and small deletions/insertions. Moreover, single heterozygous missense mutations in FRAS1 seem to be responsible for non-syndromic unilateral renal agenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号