首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Powell SW  Jiang L  Russu IM 《Biochemistry》2001,40(37):11065-11072
Nuclear magnetic resonance spectroscopy has been used to characterize opening reactions and stabilities of individual base pairs in two related DNA structures. The first is the triplex structure formed by the DNA 31-mer 5'-AGAGAGAACCCCTTCTCTCTTTTTCTCTCTT-3'. The structure belongs to the YRY (or parallel) family of triple helices. The second structure is the hairpin double helix formed by the DNA 20-mer 5'-AGAGAGAACCCCTTCTCTCT-3' and corresponds to the duplex part of the YRY triplex. The rates of exchange of imino protons with solvent in the two structures have been measured by magnetization transfer from water and by real-time exchange at 10 degrees C in 100 mM NaCl and 5 mM MgCl2 at pH 5.5 and in the presence of two exchange catalysts. The results indicate that the exchange of imino protons in protonated cytosines is most likely limited by the opening of Hoogsteen C+G base pairs. The base pair opening parameters estimated from imino proton exchange rates suggest that the stability of individual Hoogsteen base pairs in the DNA triplex is comparable to that of Watson-Crick base pairs in double-helical DNA. In the triplex structure, the exchange rates of imino protons in Watson-Crick base pairs are up to 5000-fold lower than those in double-helical DNA. This result suggests that formation of the triplex structure enhances the stability of Watson-Crick base pairs by up to 5 kcal/mol. This stabilization depends on the specific location of each triad in the triplex structure.  相似文献   

3.
Hao ZX  Tan M  Liu CD  Feng R  Wang ED  Zhu G 《FEBS letters》2010,584(21):4449-4452
The millisecond conformational flexibility is functionally important for nucleic acids and can be studied through probing the base pair open-close kinetics by proton exchange nuclear magnetic resonance (NMR) spectroscopy. Here, the traditional imino proton exchange NMR experiments were modified with transverse relaxation optimized spectroscopy and were applied to accurately measure imino proton exchange rates of all base pairs in Escherichia coli tRNALeu (CAG), and their dependence on magnesium ion concentration. Finally, we correlated millisecond conformational flexibility with aminoacylation of tRNALeu and proposed that the flexibility of the acceptor stem and the core region might contribute to aminoacylation of tRNALeu.  相似文献   

4.
Naturally occurring polyamines putrescine, cadaverine, spermidine, and spermine are analogues of the species-specific long-chain polyamines found in diatoms. Scanning electron microscopy and energy-dispersive spectroscopy show that the reactions of a soluble Ti(IV) precursor with spermidine and spermine, but not putrescine or cadaverine, produce nanostructured irregular polyhedra of titanium oxide. At 25 degrees C, the average size of the particles formed with spermidine is 400 +/- 150 nm, and with spermine, 140 +/- 50 nm. Although the particles are X-ray amorphous at room temperature, annealing studies reveal that the particles adopt crystallinity at higher temperatures characteristic of anatase (TiO2). The major portion of the biopolyamines is not coprecipitated with the solid but is left in solution. Kinetic measurements reveal an initial fast step followed by two slower phases of reaction. At 25 degrees C, k(1obs) and k(2obs) for the reaction with spermidine are 5 x 10(-3) s(-1) and 3.6 x 10(-4) s(-1), respectively, and for spermine, 4.8 x 10(-3) s(-1) and 4.2 x 10(-4) s(-1), respectively. Taken together, the data suggest spermidine and spermine are biocatalysts for the precipitation of nanostructured titanium oxide.  相似文献   

5.
The base catalysed imino proton exchange in DNA oligonucleotides of different sequences and lengths was studied by 1H-NMR saturation recovery experiments. The self-complementary sequences studied were GCGCGAATTCGCGC (I), CGCGAATTCGCG (II), GCGAATTCGC (III), and CGCGATCGCG (IV). The evaluation of base pair lifetimes was made after correction for the measured 'absence of added catalyst' effect which was found to be characterized by recovery times of 400-500 ms for the AT base pairs and 250-300 ms for the GC base pairs at 15 degrees C. End effects with rapid exchange is noticeable up to 3 base pairs from either end of the duplexes. The inner hexamer cores GAATTC of sequences I-II show similar base pair lifetime patterns, around 30 ms for the innermost AT, 5-10 ms for the outer AT and 20-50 ms for the GC base pairs at 15 degrees C. The shorter sequences III and particularly IV show much shorter lifetimes in their central AT base pairs (11 ms and 1 ms, respectively).  相似文献   

6.
Effective sequence-specific recognition of duplex DNA is possible by triplex formation with natural oligonucleotides via Hoogsteen H-bonding. However, triplex formation is in practice limited to pyrimidine oligonucleotides binding duplex A-T or G-C base-pair DNA sequences specifically at homopurine sites in the major groove as T·A-T and C+·G-C triplets. Here we report the successful modeling of novel unnatural nucleosides that recognize the T-A DNA base pair by Hoogsteen interaction. Since the DNA triplex can be considered to assume an A-type or B-type conformation, these novel Hoogsteen nucleotides are tested within model A-type and B-type conformation triplex structures. A triplet consisting of the T-A base pair and one of the novel Hoogsteen nucleotides replaces the central T·A-T triplet in the triplex using the same deoxyribose-phosphodiester and base-deoxyribose dihedral angle configuration. The entire triplex is energy minimized and the presence of any structural or energetic perturbations due to the central triplet is assessed with respect to the unmodified energy-minimized (T·A-T)11 proposed starting structures. Incorporation of these novel triplets into both A-type and B-type natural triplex structures provokes minimal change in the configuration of the central and adjacent triplets. The plan is to produce a series of Hoogsteen-like bases that preferentially bind the T-A major groove in either an A-type or B-type conformation. Selective recognition of the T-A major groove with respect to the G-C major groove, which presents similar keto and amine placement, is also assessed with configurational preference. Evaluation of the triplex solution structure by using these unnatural bases as binding conformational probes is a prerequisite to the further design of triplet forming bases. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The calculations have been carried out of interaction energy between complementary base pairs of nucleic acids in the function of conformational parametres of double helix (Arnott's parameters) by the method of atom-atom potential functions. Interaction energy as a function of conformational parametres is valley-like and varies little along the bottom of the valley. The regions of interaction energy minima are compared with experimentally determined conformational parametres of nucleic acid double helices. On the basis of calculation results the pathways of conformational transitions between different forms of double-helical polynucleotides are discussed.  相似文献   

8.
It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.  相似文献   

9.
The recent discovery of several enzymes, other than lactate dehydrogenase, with pyruvate reductase activity together with studies on the formation of end products of glycolysis during environmental and functional anaerobiosis have made it clear that anaerobic glycolysis in invertebrates is more important than previously thought. The presence of pyruvate reductase activity guarantees the continuous flux of glycolysis and, consequently, a constant supply of ATP by maintaining a low NADH/NAD+ ratio during exercise and hypoxia as well as in the subsequent recovery period. This review summarizes distribution, physicochemical, catalytic and regulative parameters of lactate-, octopine-, strombine- and alanopine dehydrogenase. In the second part, details are given on the formation of the end products lactate, octopine, strombine and alanopine as well as an evaluation of the biological role of the pyruvate reductases.  相似文献   

10.
Effect of base pair mismatches on recombination via the RecBCD pathway   总被引:11,自引:0,他引:11  
Summary The effect of base pair mismatches on recombination via the RecBCD pathway was studied in mutS and wild-type Escherichia coli, using substrates that contain single or multiple mismatches. Recombination between homologous DNA inserts in lambda phage and pBR322-derived plasmids forms phage-plasmid cointegrates that result from an odd number of crossovers. In the mutS host, when the sequence homology of a pair of 405 bp substrates decreased from 100% to 89%, the recombinant frequency decreased by about 9-fold, while in the wild-type host the decrease was about 240-fold. These results suggest that multiple mismatches can reduce recombinant frequencies by impeding the mechanism of recombination itself, and by provoking mismatch repair. Single mismatches in 31 bp substrates caused reductions in recombinant frequencies of 2-or 12-fold, depending on the location of the mismatch. However, unlike the reduction by multiple mismatches, the reduction of the recombinant frequencies by single mismatches was the same in both mutS and wild-type hosts. Thus a single match repair seems unable to act on single mismatches in very short homologies during recombination.  相似文献   

11.
12.
Sequence-dependent structural features of the DNA double helix have a strong influence on the base pair opening dynamics. Here we report a detailed study of the kinetics of base pair breathing in tracts of GC base pairs in DNA duplexes derived from 1H NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia. In the limit of infinite exchange catalyst concentration, the exchange times of the guanine imino protons of the GC tracts extrapolate to much shorter base pair lifetimes than commonly observed for isolated GC base pairs. The base pair lifetimes in the GC tracts are below 5 ms for almost all of the base pairs. The unusually rapid base pair opening dynamics of GC tracts are in striking contrast to the behavior of AT tracts, where very long base pair lifetimes are observed. The implication of these findings for the structural principles governing spontaneous helix opening as well as the DNA-binding specificity of the cytosine-5-methyltransferases, where flipping of the cytosine base has been observed, are discussed.  相似文献   

13.
14.
The base-pair opening kinetics of the self-complementary oligomer d(CGCGAATTCGCG)(2) has been derived from NMR measurements of the imino proton exchange. In general, it has previously been found that imino proton exchange in duplex DNA is limited by the proton-transfer step from the open state and that the dependence of the exchange times on the inverse concentration of an added exchange catalyst is linear. In the present study, a curvature is observed for, in particular, the innermost AT base pair with both ammonia and trimethylamine (TMA) as exchange catalysts. The two catalysts act on the same open states, but the accessibility of TMA is reduced by a factor of 2-3 compared to ammonia. Assuming that ammonia accesses the imino proton equally in the open state of the base pair and in the mononucleoside, the curvature is consistent with 7-9% of the openings ending in open states with lifetimes of about 1 micros while the bulk of open-state lifetimes fall in the nanosecond range. A curvature is also found for the exchange times of the imino protons in the A-tract sequence CGCA(8)CGC/GCGT(8)GCG. This curvature becomes increasingly pronounced from the 5'-end toward the center of the tract and hereby seems to be correlated with the contraction of the minor groove. Thus, while the base-pair lifetimes deduced from the present study are in accordance with previous measurements, a substantial fraction of the open states formed by the central AT-base pairs in the two oligomers exhibits microsecond lifetimes in contrast to previous estimates in the nanosecond range. These findings may be of relevance for the way sequence specific recognition is accomplished by proteins and ligands.  相似文献   

15.
Variation of nonexchangeable proton resonance chemical shifts for deoxycytidine and deoxy-adenosine as a function of protonation and imino tautomer formation has been determined. Protonation induces downfield shifts of proton resonances whereas formation of the rare imino tautomer induces upfield shifts. Titration curves are constructed on the basis of spectrophotometrically determined pK values. Excellent fit is obtained between theoretical titration curves and experimental data, which indicates that chemical shifts of base protons may be used to quantitatively determine the relative concentrations of either rare imino tautomeric conformations or protonated base forms. These data may be utilized as an aid in the elucidation of the nature of hydrogen bonding between mismatched base pairs in DNA oligomers containing cytosine or adenine residues. These data, in conjunction with the oligonucleotide study of Patel et al. [Patel, D. J., Kozlowski, S.A., Ikuta, S., & Itakura, K. (1984) Biochemistry 23, 3218-3226], have been used to rigorously argue the existence of a "protonated" adenine residue in the A-C mismatch. This structure allows reconciliation of the NMR solution data with crystallographic data [Hunter, W.N., Brown, T., Anand, N.N., & Kennard, O. (1986) Nature (London) 320, 552-555], which support the protonated base pair.  相似文献   

16.
RecQ helicases are critical for maintaining genomic integrity. In this study, we show that three RecQ members (WRN, deficient in the Werner syndrome; BLM, deficient in the Bloom syndrome; and Drosophila melanogaster RecQ5b (dmRecQ5b)) possess a novel strand pairing activity. Furthermore, each of these enzymes combines this strand pairing activity with its inherent DNA unwinding capability to perform coordinated strand exchange. In this regard, WRN and BLM are considerably more efficient than dmRecQ5b, apparently because dmRecQ5b lacks conserved sequences C-terminal to the helicase domain that contribute to DNA binding, strand pairing, and strand exchange. Based on our findings, we postulate that certain RecQ helicases are structurally designed to accomplish strand exchange on complex replication and recombination intermediates. This is highly consistent with proposed roles for RecQ members in DNA metabolism and the illegitimate recombination and cancer-prone phenotypes associated with RecQ defects.  相似文献   

17.
Polyaromatic molecules with amino chain substituents, upon binding with DNA, selectively catalyze exchange of the A.T base pair protons with bulk water protons. The amine-catalyzed exchange is mediated by compounds which are A.T and G.C base sequence specific, intercalators, and outside binders. A mechanism for the selective exchange, involving transient opening and closing of individual A.T base pairs in the duplex, is discussed.  相似文献   

18.
The bacteriophage ø29 DNA packaging motor that assembles on the precursor capsid (prohead) contains an essential 174-nt structural RNA (pRNA) that forms multimers. To determine the structural features of the CE- and D-loops believed to be involved in multimerization of pRNA, 35- and 19-nt RNA molecules containing the CE-loop or the D-loop, respectively, were produced and shown to form a heterodimer in a Mg2+-dependent manner, similar to that with full-length pRNA. It has been hypothesized that four intermolecular base pairs are formed between pRNA molecules. Our NMR study of the heterodimer, for the first time, proved directly the existence of two intermolecular Watson–Crick G–C base pairs. The two potential intermolecular A–U base pairs were not observed. In addition, flexibility of the D-loop was found to be important since a Watson–Crick base pair introduced at the base of the D-loop disrupted the formation of the intermolecular G–C hydrogen bonds, and therefore affected heterodimerization. Introduction of this mutation into the biologically active 120-nt pRNA (U80C mutant) resulted in no detectable dimerization at ambient temperature as shown by native gel and sedimentation velocity analyses. Interestingly, this pRNA bound to prohead and packaged DNA as well as the wild-type 120-nt pRNA.  相似文献   

19.
The chemical ligation of DNA molecules can be mediated by terminal phosphorothioate displacement of a 5' iodine. We have selected deoxyribozymes that can catalyze the formation of such phosphorothioester internucleotide linkages. The selected deoxyribozymes enhance the rate of ligation in part through the provision of a template that aligns the ligation junction and do not appear to require metal ions for catalysis.  相似文献   

20.
RNA hairpin loop stability depends on closing base pair.   总被引:3,自引:4,他引:3       下载免费PDF全文
Thermodynamic parameters are reported for hairpin formation in 1 M NaCl by RNA sequences of the type GGXAUAAUAYCC, where X and Y are CG, GC, AU, UA, GU, or UG. A nearest neighbor analysis of the data indicates the free energy change for loop formation at 37 degrees C, delta degrees Gl,37, averages 3.4 kcal/mol for hairpin loops closed with C.G, G.C, and G.U pairs. In contrast, delta G degree l,37 averages 4.6 kcal/mol for loops closed with A.U, U.A, or U.G pairs. Thus the stability of an RNA hairpin depends on the closing base pair. The hairpin with a GA mismatch that is formed by GGCGUAAUAGCC is more stable than the corresponding hairpin with an AA mismatch. Thus hairpin stability also depends on loop sequence. These effects are not included in current algorithms for prediction of RNA structure from sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号