共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging skeletal muscle shows perturbations in metabolic functions. MicroRNAs have been shown to play a critical role in aging and metabolic functions of skeletal muscle. MicroRNA-34a (miR-34a) is implicated in the brain and cardiac aging, however, its role in aging muscle is unclear. We analyzed levels of miR-34a, ceramide kinase (CERK) and other insulin signaling molecules in skeletal muscle from old mice. In addition to in vivo model, levels of these molecules were also analyzed in myoblast derived from insulin resistant (IR) humans and C2C12 myoblasts overexpressing mir-34a. Our results show that miR-34a is elevated in the muscles of 2-year-old mice and in the myoblasts of IR humans. Overexpression of miR-34a in C2C12 myoblasts leads to alterations in the insulin signaling pathway, which were rescued by its antagonism. Our analyses revealed that miR-34a targets CERK resulting in ceramide accumulation, activation of PP2A and the pJNK pathway in muscle and C2C12 myoblasts. Also, myostatin (Mstn) levels were increased in 2-year-old mouse muscle and Mstn treatment upregulated miR-34a in C2C12 myoblasts. In addition, miR-34a expression and ceramide levels did not increase during aging in Mstn−/− mice muscle. In summary, we, therefore, propose that Mstn levels increase in aging muscle and upregulate miR-34a, which inhibits CERK resulting in increased ceramide levels. This ceramide accumulation activates PP2A and pJNK causing hypophosphorylation of AKT and hyperphosphorylation of IRS1 (Ser307), respectively, impairing insulin signaling pathway and eventually inhibiting the sarcolemma localization of GLUT4. These changes would result in reduced glucose uptake and insulin resistance. This study is the first to explain the phenomenon of ceramide accrual and impairment of insulin signaling pathway in aging muscle through a miR-34a based mechanism. In conclusion, our results suggest that Mstn and miR-34a antagonism can help ameliorate ceramide accumulation and loss of insulin sensitivity in aging skeletal muscle. 相似文献
2.
3.
The platelet-derived growth factor (PDGF) signaling pathway is essential for inducing a dedifferentiated state of vascular smooth muscle cells (VSMCs). Activation of PDGF inhibits smooth muscle cell (SMC)-specific gene expression and increases the rate of proliferation and migration, leading to dedifferentiation of VSMCs. Recently, microRNAs have been shown to play a critical role in the modulation of the VSMC phenotype in response to extracellular signals. However, little is known about microRNAs regulated by PDGF in VSMCs. Herein, we identify microRNA-15b (miR-15b) as a mediator of VSMC phenotype regulation upon PDGF signaling. We demonstrate that miR-15b is induced by PDGF in pulmonary artery smooth muscle cells and is critical for PDGF-mediated repression of SMC-specific genes. In addition, we show that miR-15b promotes cell proliferation. These results indicate that PDGF signaling regulates SMC-specific gene expression and cell proliferation by modulating the expression of miR-15b to induce a dedifferentiated state in the VSMCs. [BMB Reports 2013; 46(11): 550-554] 相似文献
4.
Pessina P Conti V Tonlorenzi R Touvier T Meneveri R Cossu G Brunelli S 《Cell death and differentiation》2012,19(5):827-838
Improving stem cell therapy is a major goal for the treatment of muscle diseases, where physiological muscle regeneration is progressively exhausted. Vessel-associated stem cells, such as mesoangioblasts (MABs), appear to be the most promising cell type for the cell therapy for muscular dystrophies and have been shown to significantly contribute to restoration of muscle structure and function in different muscular dystrophy models. Here, we report that melanoma antigen-encoding gene (MAGE) protein necdin enhances muscle differentiation and regeneration by MABs. When necdin is constitutively overexpressed, it accelerates their differentiation and fusion in vitro and it increases their efficacy in reconstituting regenerating myofibres in the α-sarcoglycan dystrophic mouse. Moreover, necdin enhances survival when MABs are exposed to cytotoxic stimuli that mimic the inflammatory dystrophic environment. Taken together, these data demonstrate that overexpression of necdin may be a crucial tool to boost therapeutic applications of MABs in dystrophic muscle. 相似文献
5.
6.
Dennis Dahlmans Alexandre Houzelle Pénélope Andreux Xu Wang Johanna A. Jörgensen Norman Moullan Sabine Daemen Sander Kersten Johan Auwerx Joris Hoeks 《Journal of cellular physiology》2019,234(5):6601-6610
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR-382-5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA-382-5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA-382-5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35-fold, p < 0.01) and an induction of HSP60 protein (1.31-fold, p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR-382-5p reduced basal oxygen consumption rate by 14% ( p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR-382-5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity. 相似文献
7.
Summary Primary cultures of muscle from normal (line 412) and dystrophic (line 413) chick embryos were exposed to corticosterone-21-acetate
(C-21-A) or sodium ibuprofen (Motrin) for 28 d after myotube formation. Ibuprofen (0.5 to 500 μg/ml) or C-21-A (0.4 to 40
μg/ml)-treated cultures were fixed and assessed semiquantitatively using phase microscopy. On this basis, ibuprofen (50 μg/ml)
and C-21-A (40 μg/ml) seemed to be effective in maintaining both normal and dystrophic muscle cultures. Using ibuprofen and
C-21-A at these concentrations, experiments were repeated and analyzed quantitatively. Ibuprofen maintained culture viability
(up to 68% more myotubes than untreated controls) but had no significant effect on the number of striated cells. C-21-A effectively
maintained culture viability (up to 73% increase) and strongly promoted the formation of striated cells in these cultures
(up to a sixfold increase). Both normal and dystrophic cultures were affected similarly by these agents, but the dystrophic
cultures showed more consistent if not more extensive improvements in the parameters examined here. Thus, it seems that ibuprofen
and C-21-A may affect both normal and dystrophic muscle directly to maintain survival and even promote differentiation. 相似文献
8.
9.
Kasaai B Moffatt P Al-Salmi L Lauzier D Lessard L Hamdy RC 《The journal of histochemistry and cytochemistry》2012,60(3):219-228
While the surgical procedure of distraction osteogenesis (DO) is very successful in the treatment of orthopedic conditions, its major limitation of slow bone formation in the distracted gap has prompted numerous attempts to understand and accelerate this slow bone formation. Interestingly, WNT/FZD signaling has been identified as a critical pathway in mediating bone formation and regeneration but has not yet been studied in the context of DO. The objective of this study was to determine the spatial and temporal localization of endogenous WNT signaling proteins at various times of bone formation in a wild-type mouse model of DO. In this study, the DO protocol performed on mice consisted of three phases: latency (5 days), distraction (12 days), and consolidation (34 days). Our immunohistochemical findings of distracted bone specimens show an increased expression of WNT ligands (WNT4 and WNT10A), receptors (FZD1 and 2, LRP5 and 6), β-catenin, and pathway antagonizers (DKK1; CTBP1 and 2; sFRP1, 2, and 4) during the distraction phase, which were then down-regulated during consolidation. This is the first published report to show an activation of the WNT pathway in DO and could help identify WNT as a potential therapeutic target in accelerating bone regeneration during DO. 相似文献
10.
Ge X McFarlane C Vajjala A Lokireddy S Ng ZH Tan CK Tan NS Wahli W Sharma M Kambadur R 《Cell research》2011,21(11):1591-1604
TGF-β and myostatin are the two most important regulators of muscle growth. Both growth factors have been shown to signal through a Smad3-dependent pathway. However to date, the role of Smad3 in muscle growth and differentiation is not investigated. Here, we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy. Consistent with this, we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice. Loss of Smad3 also led to defective satellite cell (SC) functionality. Smad3-null SCs showed reduced propensity for self-renewal, which may lead to a progressive loss of SC number. Indeed, decreased SC number was observed in skeletal muscle from Smad3-null mice showing signs of severe muscle wasting. Further in vitro analysis of primary myoblast cultures identified that Smad3-null myoblasts exhibit impaired proliferation, differentiation and fusion, resulting in the formation of atrophied myotubes. A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts. Given that myostatin is a negative regulator, we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice. Consistent with this theory, inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype. 相似文献
11.
In the present study, we investigated the roles and molecular mechanisms of miR-320a in human nasopharyngeal carcinoma (NPC). miR-320a expression was strongly reduced in NPC tissues and cell lines. Overexpression of miR-320a significantly suppressed NPC cell growth, migration, invasion and tumor growth in a xenograft mouse model. A luciferase reporter assay revealed that miR-320a could directly bind to the 3′ UTR of BMI-1. Overexpression of BMI-1 rescued miR-320a-mediated biological function. BMI-1 expression was found to be up-regulated and inversely correlated with miR-320a expression in NPC. Collectively, our data indicate that miR-320a plays a tumor suppressor role in the development and progression of NPC and may be a novel therapeutic target against NPC. 相似文献
12.
Effects of microRNA‐330 on vulnerable atherosclerotic plaques formation and vascular endothelial cell proliferation through the WNT signaling pathway in acute coronary syndrome 下载免费PDF全文
Jing Ren Rui Ma Zhu‐Bo Zhang Yang Li Ping Lei Jian‐Long Men 《Journal of cellular biochemistry》2018,119(6):4514-4527
13.
14.
15.
16.
本实验室前期研究发现,miR-101a对山羊骨骼肌卫星细胞(skeletal muscle satellite cells, SMSCs)分化有促进作用,但其具体作用机制并不清楚。本研究利用PicTar、TargetScan和miRanda软件在线预测miR-101a的靶基因,并通过双荧光素酶报告基因进行实验验证;检测了山羊SMSCs分化不同时期miR-101a和靶基因的表达关系,同时分析了超表达和抑制miR-101a对靶基因表达水平的影响。结果证实,zeste增强子同源物2(enhancer of zeste homologue 2, EZH2)基因mRNA的3°UTR具有miR-101a结合位点,是miR-101a的一个靶基因。在SMSCs分化过程中,随着miR-101a表达水平的升高,EZH2的表达在mRNA和蛋白水平均下调。抑制miR-101a后,EZH2的表达极显著升高(P<0.01),但是在超表达miR-101a条件下,EZH2表达变化在mRNA和蛋白水平均不显著(P>0.05)。以上研究结果表明,miR-101a能通过抑制EZH2的表达来促进山羊SMSCs分化,为进一步阐明miR-101a对SMSCs的调控机制提供了理论依据。 相似文献
17.
Keren Jiang Meng Zhang Fang Li Donghua Li Guirong Sun Xiaojun Liu 《Animal cells and systems.》2017,21(6):365-373
Growth factor receptor-bound protein 2 (Grb2) have been proved by a lot of studies playing a major role in cell proliferation and cell differentiation. However, the regulation of Grb2 expression by microRNAs (miRNAs) in chicken breast muscle still remains unknown. The expression profile of Grb2 was checked based on our previous RNA sequencing data and the Grb2 relative expression level in breast muscle of aged hens (55-week-old) was validated significantly higher than juvenile hens (20-week-old) using qRT-PCR. miRNAs that interact with Grb2 have been predicted in chicken and the relationship between the potential miRNA and Grb2 was verified using dual luciferase reporter assay in chicken DF1 cells. Dual-luciferase reporter assays results demonstrated that the expression of luciferase reporter gene linked with part sequence of the 3′UTR of chicken Grb2 gene was down-regulated by the overexpression of gga (Gallus Gallus)-miR-200a-3p in the DF1 cells, and the down-regulation behavior was abolished when the gga-miR-200a-3p binding site in 3′UTR of Grb2 was mutated, indicating that gga-miR-200a can suppress the expression level of its target gene Grb2. Therefore, we concluded that the significantly increased expression level of Grb2 in the breast muscle of aged chicken can (at least partly can) be explained by the decreased expression of miR-200a, which reduced the inhibitory effect on Grb2. Taken together, these findings suggest that gga-miR-200a can suppress the expression level of its target gene Grb2 and might be involved in the cell differentiation and proliferation of chicken breast muscle through binding with the 3’UTR of Grb2. 相似文献
18.
《Channels (Austin, Tex.)》2013,7(3):145-160
An absence of utrophin in muscle from mdx mice prolongs the open time of single mechanosensitive channels. On a time scale much longer than the duration of individual channel activations, genetic depletion of utrophin produces low frequency oscillations of channel open probability. Oscillatory channel opening occurred in the dystrophin/utrophin mutants, but was absent in wild-type and mdx fibers. By contrast, small conductance channels showed random gating behavior when present in the same patch. Applying a negative pressure to a patch on a DKO fiber produced a burst of mode II activity, but channels subsequently closed and remained silent for tens of seconds during the maintained pressure stimulus. In addition, simultaneous opening of multiple MS channels could be frequently observed in recordings from patches on DKO fibers, but only rarely in wild-type and mdx muscle. A model which accounts for the single-channel data is proposed in which utrophin acts as gating spring which maintains the mechanical stability a caveolar-like compartment. The state of this compartment is suggested to be dynamic; its continuity with the extracellular surface varying over seconds to minutes. Loss of the mechanical stability of this compartment contributes to pathogenic Ca2+ entry through MS channels in Duchenne dystrophy. 相似文献
19.
20.
Jeffry B Lansman 《Channels (Austin, Tex.)》2015,9(3):145-160
An absence of utrophin in muscle from mdx mice prolongs the open time of single mechanosensitive channels. On a time scale much longer than the duration of individual channel activations, genetic depletion of utrophin produces low frequency oscillations of channel open probability. Oscillatory channel opening occurred in the dystrophin/utrophin mutants, but was absent in wild-type and mdx fibers. By contrast, small conductance channels showed random gating behavior when present in the same patch. Applying a negative pressure to a patch on a DKO fiber produced a burst of mode II activity, but channels subsequently closed and remained silent for tens of seconds during the maintained pressure stimulus. In addition, simultaneous opening of multiple MS channels could be frequently observed in recordings from patches on DKO fibers, but only rarely in wild-type and mdx muscle. A model which accounts for the single-channel data is proposed in which utrophin acts as gating spring which maintains the mechanical stability a caveolar-like compartment. The state of this compartment is suggested to be dynamic; its continuity with the extracellular surface varying over seconds to minutes. Loss of the mechanical stability of this compartment contributes to pathogenic Ca2+ entry through MS channels in Duchenne dystrophy. 相似文献