首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major depressive disorders (MDD) and cardiovascular disease are mutually associated. They share signs and symptoms of the "metabolic syndrome". Two observations that may be causally related with the metabolic syndrome and therefore with both MDD and cardiovascular disease are a decrease in omega-3 polyunsaturated fatty acids (PUFAs) and a rise in plasma homocysteine (tHcy) levels. Both the rise in tHcy and the decrease in omega-3 PUFAs may be associated with enhanced lipid peroxidation. We exploratively studied 44 randomly chosen patients out of a cohort of 134 patients with the recurrent form of MDD (MDD-R). We measured tHcy levels together with saturated FAs, monounsaturated fatty acids (MUFAs) and PUFAs of the omega-3, omega-6 and omega-9 series in plasma and erythrocytes. Levels were compared with laboratory reference values. The main findings were a decrease in the erythrocytes of C22:5omega-3, C22:6omega-3, C24:1omega-9 and C20:3omega-9 and in the plasma a decrease in C24:1omega-9 and C20:3omega-9. The only significant association we found was between the total of omega-6 fatty acids and plasma tHcy. The FA alterations were found in patients although most of them were clinically recovered, suggesting that the alterations may represent a biological" trait" marker for recurrent depression.  相似文献   

2.
IntroductionDisturbances in onset and resolution of inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. Dietary polyunsaturated fatty acids (PUFAs) can be converted into lipid mediators here collectively named oxylipins. These include classical eicosanoids, but also pro-resolving mediators. A balanced production of pro-inflammatory and pro-resolving oxylipins is of importance for adequate inflammatory responses and subsequent return to homeostasis.ObjectivesHere we investigated if PUFA metabolism is disturbed in COPD patients.MethodsFree PUFA and oxylipin levels were measured in induced sputum samples from the Bergen COPD cohort and COPD exacerbation study using liquid chromatography-mass spectrometry. Additionally, effects of whole cigarette smoke on PUFA metabolism in air-liquid interface cultures of primary bronchial epithelial cells were assessed.ResultsSignificantly lower levels of free alpha-linolenic acid, linoleic acid and eicosapentaenoic acid (EPA) were detected in sputum from stable COPD patients compared to controls. During acute exacerbation (AE), levels of free arachidonic acid and docosapentaenoic acid were higher than in stable COPD patients. Furthermore, levels of omega-3 EPA- and docosahexaenoic acid-derived oxylipins were lower in sputum from stable COPD patients compared to controls. Cyclooxygenase-2-converted mediators were mostly increased during AE. In vitro studies additionally showed that cigarette smoke exposure may also directly contribute to altered epithelial PUFA metabolism, and indirectly by causing airway epithelial remodelling.ConclusionsOur findings show significant differences in PUFA metabolism in COPD patients compared to controls, further changed during AE. Airway epithelial remodelling may contribute to these changes. These findings provide new insight in impaired inflammatory resolution in COPD.  相似文献   

3.
High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP+, NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats.  相似文献   

4.
Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs. In reference to specific dietary benefits of differential omega-3 fatty acids, docosahexaenoic and eicosapentaenoic acids (DHA and EPA) are transformed to monohydroxy, dihydroxy, trihydroxy, and other complex mediators during infection, injury, and exercise to resolve inflammation. The presented FADD approach describes the metabolic transformation of DHA and EPA in response to injury, infection, and exercise to govern uncontrolled inflammation. Metabolic transformation of DHA and EPA into a number of pro-resolving molecules exemplifies a novel, inexpensive approach compared to traditional, expensive drug discovery. DHA and EPA have been recommended for prevention of cardiovascular disease since 1970. Therefore, the FADD approach is relevant to cardiovascular disease and resolution of inflammation in many injury models. Future research demands identification of novel action targets, receptors for biomolecules, mechanism(s), and drug-interactions with resolvins in order to maintain homeostasis.  相似文献   

5.
Preclinical and clinical evidence suggests that docosahexaenoic acid (DHA), an omega-3 fatty acid derived from diet or synthesized in the liver, decreases the risk of developing Alzheimer’s disease (AD). DHA levels are reduced in the brain of subjects with AD, but it is still unclear whether human dementias are associated with dysregulations of DHA metabolism. A systems biological view of omega-3 fatty acid metabolism offered unexpected insights on the regulation of DHA homeostasis in AD [1]. Results of multi-organ lipidomic analyses were integrated with clinical and gene-expression data sets to develop testable hypotheses on the functional significance of lipid abnormalities observed and on their possible mechanistic bases. One surprising outcome of this integrative approach was the discovery that the liver of AD patients has a limited capacity to convert shorter chain omega-3 fatty acids into DHA due to a deficit in the peroxisomal d-bifunctional protein. This deficit may contribute to the decrease in brain DHA levels and contribute to cognitive impairment.  相似文献   

6.
Steatosis, or excessive accumulation of lipids in the liver, is a generally accepted previous step to the development of more severe conditions like nonalcoholic steatohepatitis, fibrosis, and cirrhosis. We aimed to characterize the metabolic profile that defines simple steatosis in human tissue and to identify potential disturbances in the hepatic metabolism that could favor the switch to progressive liver damage. A total of 46 samples, 23 from steatotic and 23 from nonsteatotic human livers, were analyzed following a holistic LC-MS-based metabonomic analysis that combines RP and HILIC chromatographic separations. Multivariate statistical data analysis satisfactorily classified samples and revealed steatosis-associated biomarkers. Increased levels of bile acids and phospholipid degradation products, and decreased levels of antioxidant species, were found in steatotic livers, indicating disturbances in lipid and bile acid homeostasis and mitochondrial dysfunction. Changes in hypoxanthine, creatinine, glutamate, glutamine, or γ-glutamyl-dipeptides concentrations, suggestive of alterations in energy metabolism and amino acid metabolism and transport, were also found. The results show that the proposed analytical strategy is suitable to achieve a comprehensive metabolic profile of steatotic human liver tissue and provide new insights into the metabolic alterations occurring in fatty liver that could contribute to its predisposition to damage evolution.  相似文献   

7.
Inflammation is a defensive response to injury and infection, but excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases. Clinical assessment of dietary supplementation of omega-3 polyunsaturated fatty acids (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) indicate their beneficial impact on human diseases in which inflammation is suspected as a key component of the pathogenesis. Although the mechanism of EPA and DHA action is still not fully defined in molecular terms, recent studies have revealed that, during the course of acute inflammation, omega-3 PUFA-derived mediators including resolvins and protectins with potent anti-inflammatory and pro-resolving properties are produced. In this review, we provide an overview of the formation and actions of EPA-derived anti-inflammatory lipid mediator resolvin E1.  相似文献   

8.
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.  相似文献   

9.
The underlying biochemical consequences of inflammatory bowel disease (IBD) on the systemic and gastrointestinal metabolism have not yet been fully elucidated but could help to better understand the disease pathogenesis and to identify tissue-specific markers associated with the different disease stages. Here, we applied a metabonomic approach to monitor metabolic events associated with the gradual development of Crohn's disease (CD)-like ileitis in the TNF(ΔARE/WT) mouse model. Metabolic profiles of different intestinal compartments from the age of 4 up to 24 weeks were generated by combining proton nuclear magnetic resonance ((1)H NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). From 8 weeks onward, mice developed CD similar to the immune and tissue-related phenotype of human CD with ileal involvement, including ileal histological abnormalities, reduced fat mass and body weight, as well as hallmarks of malabsorption with higher energy wasting. The metabonomic approach highlighted shifts in the intestinal lipid metabolism concomitant to the histological onset of inflammation. Moreover, the advanced disease status was characterized by a significantly altered metabolism of cholesterol, triglycerides, phospholipids, plasmalogens, and sphingomyelins in the inflamed tissue (ileum) and the adjacent intestinal parts (proximal colon). These results describe different biological processes associated with the disease onset, including modifications of the general cell membrane composition, alteration of energy homeostasis, and finally the generation of inflammatory lipid mediators. Taken together, this provides novel insights into IBD-related alterations of specific lipid-dependant processes during inflammatory states.  相似文献   

10.
Among chronic liver diseases, fatty liver has the highest incidence worldwide. Coexistence of fatty liver and other chronic diseases, such as diabetes, hepatitis B virus (HBV) and Helicobacter pylori (Hp) infection, is common in clinical practice. The present study was conducted to analyze the prevalence and association of coexisting diseases in patients with fatty liver and to investigate how coexisting diseases contribute to abnormal transaminase and lipid profiles. We enrolled participants who were diagnosed with fatty liver via ultrasound in the physical examination center of West China Hospital. Multivariable logistic regression was used to determine the adjusted odds ratios (ORs). We found that 23.6% of patients who underwent physical examinations were diagnosed with fatty liver. These patients had higher risks of metabolic syndrome (MetS), type 2 diabetes mellitus (T2DM), and hypertension and a lower risk of HBV infection. The risks of Hp infection and hyperthyroidism did not statistically differ. When fatty liver coexisted with T2DM, MetS and thyroid dysfunction, it conferred a higher risk of elevated transaminase. Fatty liver was positively correlated with triglycerides, cholesterol and low-density lipoprotein cholesterol (LDL-C) and negatively correlated with HBV; thus, HBV had a neutralizing effect on lipid metabolism when coexisting with fatty liver. In conclusion, patients with fatty liver that coexists with T2DM, MetS and thyroid dysfunction are more prone to elevated transaminase levels. Patients with both fatty liver and HBV may experience a neutralizing effect on their lipid metabolism. Thus, lipid alterations should be monitored in these patients during antiviral treatment for HBV.  相似文献   

11.
Tan G  Lou Z  Liao W  Dong X  Zhu Z  Li W  Chai Y 《Molecular bioSystems》2012,8(2):548-556
An ultra performance liquid chromatography coupled to mass spectrometry-based metabonomic approach, which utilizes both reversed-performance (RP) chromatography and hydrophilic interaction chromatography (HILIC) separations, has been developed to characterize the global serum metabolic profile associated with myocardial infarction (MI). The HILIC was found necessary for a comprehensive serum metabonomic profiling, providing complementary information to RP chromatography. By combining with partial least squares discriminant analysis, 21 potential biomarkers in rat serum were identified. To further elucidate the pathophysiology of MI, related metabolic pathways have been studied. It was found that MI was closely related to disturbed sphingolipid metabolism, phospholipid catabolism, fatty acid transportation and metabolism, tryptophan metabolism, branched-chain amino acids metabolism, phenylalanine metabolism, and arginine and proline metabolism. With the presented metabonomic method, we systematically analyzed the therapeutic effects of Traditional Chinese Medicine Sini decoction (SND). The results demonstrated that SND administration could provide satisfactory effects on MI through partially regulating the perturbed metabolic pathways.  相似文献   

12.
Obesity is critically related with the development of metabolic and pathophysiological alterations among which non-alcoholic fatty liver disease (NAFLD) is of especial relevance. Although there are numerous strategies to successfully treat obesity, the prevention of weight regain still remains challenging for individuals who have undergone weight loss programs. In such context, diet and physical activity are considered essential for the regulation of body weight and lipid metabolism. In this study, rats were fed a high-fat diet (HFD) to induce obesity and alterations in hepatic lipid metabolism. Obese rats were then treated with single or combined strategies of caloric restriction, physical exercise, and/or pharmacological treatment with an appetite suppressant, to lose weight, reverse the obesity-related alterations in hepatic morphology and lipid metabolism and maintain the beneficial effects of the interventions used. HFD induced excess body weight, hepatic steatosis, altered fatty acid profile, dysregulated gene expression of lipogenic and lipolytic enzymes, as well as plasma markers of liver damage, and modifications in liver antioxidant enzyme activity. Such alterations were ameliorated by caloric restriction in combination with a mixed training protocol and/or food-intake inhibitor administration during a weight loss intervention period of 3 weeks, and the beneficial effects remained after 6 weeks of weight maintenance, with some interesting interactions observed. In conclusion, weight loss strategies assayed were efficient at correcting the obesogenic action of a HFD and related alterations in hepatic functionality through different molecular mechanisms. The beneficial effects were also evident along the post-intervention maintenance period to avoid body weight regain.  相似文献   

13.
Accumulating investigations have focused on the severity of central nervous system (CNS) complications in diabetic patients. The effects of the high glucose (HG) probably attribute to the metabolic disturbances in CNS. Astrocytes, with powerful ability of metabolic regulation, play crucial roles in physiological and pathological processes in CNS. Hence, an in-depth analysis as to metabolic alterations of astrocytes exposure to HG would facilitate to explore the underlying pathogenesis. In this study, the 1H NMR-based metabonomic approach was performed to characterize the metabolic variations of intracellular metabolites and corresponding culture media in a time-dependent manner. Our results revealed a significant elevation in lactate production and release. Four amino acids, leucine, isoleucine, methionine and tyrosine, were the most important metabolites for utilization. Also, profound disturbances of several metabolic pathways, including osmoregulation, energy metabolism, and cellular biosynthesis were observed. In that sense, the detailed information of astrocyte metabolism under HG exposure provides us a comprehensive understanding of the intrinsic metabolic disorders in CNS during hyperglycemia or diabetes.  相似文献   

14.
Leprosy is an infectious and contagious spectral disease accompanied by a series of immunological events triggered by the host response to the aetiologic agent, Mycobacterium leprae . The induction and maintenance of the immune/inflammatory response in leprosy are linked to multiple cell interactions and soluble factors, primarily through the action of cytokines. The purpose of the present study was to evaluate the serum levels of tumour necrosis factor (TNF)-α and its soluble receptors (sTNF-R1 and sTNF-R2) in leprosy patients at different stages of multidrug treatment (MDT) in comparison with non-infected individuals and to determine their role as putative biomarkers of the severity of leprosy or the treatment response. ELISA was used to measure the levels of these molecules in 30 healthy controls and 37 leprosy patients at the time of diagnosis and during and after MDT. Our results showed increases in the serum levels of TNF-α and sTNF-R2 in infected individuals in comparison with controls. The levels of TNF-α, but not sTNF-R2, decreased with treatment. The current results corroborate previous reports of elevated serum levels of TNF-α in leprosy and suggest a role for sTNF-R2 in the control of this cytokine during MDT.  相似文献   

15.
Although n-3 polyunsaturated fatty acids (PUFA) revealed promising therapeutic results in non-alcoholic fatty liver disease (NAFLD), which is considered as the most prevalent cause of chronic hepatic disease, inconsistencies are calling for further confirmatory trials to demonstrate therapeutic efficacy and safety. The study, registered as NCT02201160 on www.clinicaltrials.gov, was designed to compare two groups of NAFLD with a different severity, and to evaluate the efficacy of n-3 PUFA supplementation. Twenty young male participants of French Canadian origin with NAFLD were enrolled and classified into moderate (mNAFLD) and severe (sNAFLD) fatty liver groups, according to transaminase levels, ultrasonography, NAFLD Activity Score and Fatty Liver Index (FLI). The sNAFLD patients were assigned to consume 2 g of n-3 PUFA for 6 months. sNAFLD patients displayed higher insulinemia, insulin resistance (IR), oxidative stress (OxS), systolic blood pressure and the risk lipid indicators of cardiovascular diseases. Supplementation of n-3 PUFA for 6 months resulted in a significant increase in concentrations of eicosapentaenoic and docosahexaenoic acids in red blood cells along with an attenuation of hepatic steatosis as reflected by the reduction of the FLI, ALT and ALT/AST ratio. Moreover, the n-3 PUFA improved the lipid profile and carotid intima-media thickness, while reducing metabolic and OxS markers as well as raising adiponectin. In conclusion, NAFLD severity was essentially related to IR. Treatment with n-3 PUFA has an evidently beneficial effect on liver steatosis and related metabolic abnormalities. Furthermore, the cross association of omega-3 index with cardiometabolic markers may serve as a predictor for cardiovascular risk disorders in NAFLD.  相似文献   

16.
Omega-3 fatty acids, such as, DHA and EPA, have well established beneficial effects on human health, but their action mechanisms remain unknown. Recent pharmacological studies have suggested several molecular targets for the anti-inflammatory effects of omega-3 fatty acids, namely, nuclear receptor PPARγ and the G protein-coupled receptor GPR120. Furthermore, the conversions of omega-3 fatty acids to anti-inflammatory and pro-resolving resolvins and protectins and the identifications of putative target GPCRs, ChemR23, BLT?, ALX/FPR2, and GPR32, have drawn great attention. In addition, the pharmacology of omega-3 fatty acids is now under scrutiny. However, questions remain to be answered regarding the in vivo effects of omega-3 fatty acids at the molecular level. In this review, anti-inflammatory effects of omega-3 fatty acids are discussed from the viewpoint of molecular pharmacology, particularly with respect to the above-mentioned GPCRs.  相似文献   

17.
Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.  相似文献   

18.
Hua Y  Qiu Y  Zhao A  Wang X  Chen T  Zhang Z  Chi Y  Li Q  Sun W  Li G  Cai Z  Zhou Z  Jia W 《Journal of proteome research》2011,10(8):3513-3521
While extensive evidence indicates that tumor cells shift their global metabolic programs, the molecular details of the metabolic transformation in tumor invasion, progression, and metastasis remain largely unknown. Characterization of the time-dependent metabolic shift during the tumor invasion, development, and metastasis will describe an important aspect of tumor phenotypes and potentially allow us to design therapies that inhibit tumor cell movement. In this study, a metabonomic study was performed to characterize the global metabolic changes during the process of tumor invasion and metastasis to lung in a mouse model with subcutaneous transplantation of murine osteosarcoma cell line (LM8). The serum metabolic profiling revealed that many key metabolites in glycolysis and tricarboxylic acid (TCA) cycle, as well as most of the amino acids were elevated at rapidly growing stage of tumor, presumably resulting from a high energy demand and turnover of anabolic metabolism during the tumor cell proliferation. Serum levels of succinic acid and proline significantly increased (with fold change FC = 10.75 and 4.43, relative to controls) among all the metabolites in the third week. The serum metabolic profile of lung metastasis at week 4 was different from that at week 3, in that most of previously increased serum metabolites were found decreased, except for cholesterol and several free fatty acids, suggesting lowered carbohydrate and amino acids metabolism, but an elevated lipid metabolism associated with tumor metastasis.  相似文献   

19.
Significant interactions exist between fatty acids and the endocrine system. Hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn lead to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids (PUFA) are also precursors for eicosanoids including prostaglandins, leukotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn alter both hormone and neuropeptide concentrations and their receptors. Saturated and trans fatty acids (TFA) decrease insulin concentration leading to insulin resistance. In contrast, PUFA increase plasma insulin concentration and decrease insulin resistance. In humans, omega-3 PUFA alter the levels of opioid peptides in plasma.  相似文献   

20.
In the second part of this study, emphasis is placed on nutritional intakes (fatty acids and micronutrients) and fatty acid intake and metabolism in the blood, respectively, according to a combined 24 h recall and standardized food frequency questionnaire analyses of keloid prone patients (n=10), compared with normal black South Africans (n=80), and total phospholipid blood (plasma and red blood cell ) analyses of keloid patients (n=20), compared with normal individuals (n=20). Lipid extraction and fractionation by standard procedures, total phospholipid (TPL) separation with thin layer chromatography, and fatty acid methyl ester analyses with gas liquid chromatography techniques were used. Since nutrition may play a role in several disease disorders, the purpose of this study was to confirm or refute a role for essential fatty acids (EFAs) in the hypothesis of keloid formations stated in part 1 of this study. (1)According to the Canadian recommendation (1991), we observed that in keloid patients linoleic acid (LA) and arachidonic acid (AA) dietary intakes, as EFAs of the omega-6-series, are higher than the recommended 7-11 g/d. However, the a-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) dietary intakes, as EFAs of the omega-3 series, are lower than the recommendation of 1.1-1.5 g/d. This was also the case in the control group, where a higher dietary intake of the omega-6 fatty acids and a slightly lower dietary intake of the omega-3 fatty acids occurred. Thus, we confirm a high dietary intake of LA (as a product of organ meats, diary products and many vegetable oils) and AA (as a product of meats and egg yolks), as well as lower dietary intakes of ALA (as a product of grains, green leafy vegetables, soy oil, rapeseed oil and linseed), and EPA and DHA (as products of marine oils). Lower micronutrient intakes than the recommended dietary allowances were observed in the keloid group that may influence EFA metabolism and/or collagen synthesis. Of cardinal importance may be the lower intake of calcium in the keloid patients that may contribute to abnormal cell signal transduction in fibroblasts and consequent collagen overproduction, and the lower copper intake that may influence the immune system, or perhaps even the high magnesium intake that stimulates metabolic activity. Micronutrient deficiencies also occurred in the diets of the normal black South Africans that served as a control group. In the case of plasma TPLs, deficiency of the omega-3 EFA series (ALA, EPA and DHA) occurred, and this is in accordance with the apparent lower omega-3 EFA intake in the diets of these patients. In the case of the red blood cell TPLs, as a true and reliable source of dietary fatty acid intake and metabolism, sufficient EFAs of the omega-6 series (LA and AA) and the omega-3 series (ALA, EPA and DHA) occurred. For this study group a relative deficiency of nutritional omega-3 EFA intake apparently did occur, but was probably compensated for by blood fatty acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号