共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CK Baumgartner H Yagita LP Malherbe 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(5):2309-2317
Diverse Ag-specific memory TCR repertoires are essential for protection against pathogens. Subunit vaccines that combine peptide or protein Ags with TLR agonists are very potent at inducing T cell immune responses, but their capacity to elicit stable and diverse memory CD4 T cell repertoires has not been evaluated. In this study, we examined the evolution of a complex Ag-specific population during the transition from primary effectors to memory T cells after peptide or protein vaccination. Both vaccination regimens induced equally diverse effector CD4 TCR repertoires, but peptide vaccines skewed the memory CD4 TCR repertoire toward high-affinity clonotypes whereas protein vaccines maintained low-affinity clonotypes in the memory compartment. CD27-mediated signaling was essential for the maintenance of low-affinity clonotypes after protein vaccination but was not sufficient to promote their survival following peptide vaccination. The rapid culling of the TCR repertoire in peptide-immunized mice coincided with a prolonged proliferation phase during which low-affinity clonotypes disappeared despite exhibiting no sign of enhanced apoptosis. Our study reveals a novel affinity threshold for memory CD4 T cell differentiation following vaccination and suggests a role for nonapoptotic cell death in the regulation of CD4 T cell clonal selection. 相似文献
3.
Spoorendonk KM Peterson-Maduro J Renn J Trowe T Kranenbarg S Winkler C Schulte-Merker S 《Development (Cambridge, England)》2008,135(22):3765-3774
Retinoic acid (RA) plays important roles in diverse biological processes ranging from germ cell specification to limb patterning. RA ultimately exerts its effect in the nucleus, but how RA levels are being generated and maintained locally is less clear. Here, we have analyzed the zebrafish stocksteif mutant, which exhibits severe over-ossification of the entire vertebral column. stocksteif encodes cyp26b1, a cytochrome P450 member that metabolizes RA. The mutant is completely phenocopied by treating 4 dpf wild-type embryos with either RA or the pharmacological Cyp26 blocker R115866, thus identifying a previously unappreciated role for RA and cyp26b1 in osteogenesis of the vertebral column. Cyp26b1 is expressed within osteoblast cells, demonstrating that RA levels within these cells need to be tightly controlled. Furthermore, we have examined the effect of RA on osteoblasts in vivo. As numbers of osteoblasts do not change upon RA treatment, we suggest that RA causes increased activity of axial osteoblasts, ultimately resulting in defective skeletogenesis. 相似文献
4.
Matthew A. Schaller Hannah Logue Sumanta Mukherjee Dennis M. Lindell Ana Lucia Coelho Pamela Lincoln William F. Carson IV Toshihiro Ito Karen A. Cavassani Stephen W. Chensue Cory M. Hogaboam Nicholas W. Lukacs Steven L. Kunkel 《PloS one》2010,5(8)
Background
Studies have shown that Notch is essential for the maintenance of a T cell Th2 phenotype in vivo. It has also been shown that Notch ligands have diverse functions during T cell activation. We chose to investigate the role of Notch ligands during the Th2 response.Principal Findings
We studied the relationship of two Notch ligands, delta-like 4 and jagged-1, to T cell proliferation in C57 Bl/6 mice. Our findings indicate that jagged-1 does not affect the rate of T cell proliferation in any subset examined. However, delta-like 4 causes an increase in the expansion of Th2 memory cells and a decrease in effector cell proliferation. Our in vivo studies indicate that the Notch system is dynamically regulated, and that blocking one Notch ligand increases the effective concentration of other Notch ligands, thus altering the response. Examination of genes related to the Notch pathway revealed that the Notch receptors were increased in memory T cells. Expression of BMI1, a gene involved in T cell proliferation, was also higher in memory T cells. Further experiments demonstrated that Notch directly regulates the expression of the BMI1 gene in T cells and may govern T cell proliferation through this pathway.Conclusions
From these experiments we can make several novel conclusions about the role of Notch ligands in T cell biology. The first is that delta-like 4 suppresses effector cell proliferation and enhances Th2 memory cell proliferation. The second is that blocking one Notch ligand in vivo effectively increases the concentration of other Notch ligands, which can then alter the response. 相似文献5.
DNA甲基化、染色质重塑等表观遗传作用对CD4^ T细胞向Th1和Th2的分化有重要的影响,现对Th1细胞表达IFN-γ以及Th2细胞表达IL-4/IL-13在基因转录水平的调节作用给予概述,重点阐述相关转录因子、酶以及蛋白质复合物所发挥的表观遗传调节作用的可能机制。 相似文献
6.
7.
8.
Katarina Radulovic Valerio Rossini Calin Manta Karlheinz Holzmann Hans A. Kestler Jan Hendrik Niess 《PloS one》2013,8(6)
Migration of naïve and activated lymphocytes is regulated by the expression of various molecules such as chemokine receptors and ligands. CD69, the early activation marker of C-type lectin domain family, is also shown to regulate the lymphocyte migration by affecting their egress from the thymus and secondary lymphoid organs. Here, we aimed to investigate the role of CD69 in accumulation of CD4 T cells in intestine using murine models of inflammatory bowel disease. We found that genetic deletion of CD69 in mice increases the expression of the chemokines CCL-1, CXCL-10 and CCL-19 in CD4+ T cells and/or CD4− cells. Efficient in vitro migration of CD69-deficient CD4 T cells toward the chemokine stimuli was the result of increased expression and/or affinity of chemokine receptors. In vivo CD69−/− CD4 T cells accumulate in the intestine in higher numbers than B6 CD4 T cells as observed in competitive homing assay, dextran sodium sulphate (DSS)-induced colitis and antigen-specific transfer colitis. In DSS colitis CD69−/− CD4 T cell accumulation in colonic lamina propria (cLP) was associated with increased expression of CCL-1, CXCL-10 and CCL-19 genes. Furthermore, treatment of DSS-administrated CD69−/− mice with the mixture of CCL-1, CXCL-10 and CCL-19 neutralizing Abs significantly decreased the histopathological signs of colitis. Transfer of OT-II×CD69−/− CD45RBhigh CD4 T cells into RAG−/− hosts induced CD4 T cell accumulation in cLP. This study showed CD69 as negative regulator of inflammatory responses in intestine as it decreases the expression of chemotactic receptors and ligands and reduces the accumulation of CD4 T cells in cLP during colitis. 相似文献
9.
Yun-yun Li Yi-kong Lin Yue Li Xin-hua Liu Da-jin Li Xiao-lin Wang Li Wang Yi-zhun Zhu Min Yu Mei-rong Du 《International journal of biological sciences》2022,18(5):1961
Background: Endometriosis (EMS), a typical endocrine immune disorder, associates with dramatically increased estrogen production and disorganized immune response in ectopic focus. Peritoneal regulatory T cells (Tregs) expansion in women with EMS and their pathogenic role attributable to endometriotic immunotolerance has been reported. Whether local high estrogen promotes EMS by discipling Tregs needs to be further explored. Up to date, there is no effective medicine for the treatment of EMS. SCM-198 is a synthetic leonurine with multiple physiological activities. Whether SCM-198 could regulate Tregs via estrogen and facilitate the radical cure of EMS has not yet been reported.Methods: Proportion of Tregs in peritoneal fluid of patients with EMS was firstly analyzed via flow cytometry. Peritoneal estrogen concentration and the mRNA levels of estrogen receptor α (ERα) and estrogen receptor β (ERβ) of Tregs were detected by ELISA and RT-PCR, respectively. Grouped in vitro induction assays were performed to explore the effects of SCM-198 and estrogen signaling on Tregs. Cell invasion and viability assays were utilized to detect the crosstalk between Tregs and ectopic endometrial stromal cells (eESCs), with or without SCM-198 treatment. Furthermore, EMS mice models were established to verify the therapeutic effects of SCM-198.Results: Increased Tregs were found in peritoneal fluid of EMS patients, accompanied with estrogen-ERα overactivation. Estrogen-ERα triggered the expansion of Tregs and their cytokine production (IL-10 and TGF-β1), which could be reversed by SCM-198 treatment. Moreover, SCM-198 abated the invasion and viability of eESCs enhanced by Tregs. In vivo experiments confirmed that SCM-198 obviously retarded the growth of ectopic lesions and downregulated the functions of Tregs via estrogen-ERα inactivation.Conclusions: These data suggest that SCM-198 attenuates Tregs expansion via the inhibition of estrogen-ERα signaling in EMS and offer a promising therapy for such a refractory disease. 相似文献
10.
11.
LFA-1 regulates T cell activation and signal transduction through the immunological synapse. T cell receptor (TCR) stimulation rapidly activates LFA-1, which provides unique LFA-1-dependent signals to promote T cell activation. However, the detailed molecular pathways that regulate these processes and the precise mechanism by which LFA-1 contributes to TCR activation remain unclear. We found LFA-1 directly participates in Erk1/2 signaling upon TCR stimulation in CD8+ T cells. The presence of LFA-1, not ligand binding, is required for the TCR-mediated Erk1/2 signal pathway. LFA-1-deficient T cells have defects in sustained Erk1/2 signaling and TCR/CD3 clustering, which subsequently prevents MTOC reorientation, cell cycle progression, and mitosis. LFA-1 regulates the TCR-mediated Erk1/2 signal pathway in the context of immunological synapse for recruitment and amplification of the Erk1/2 signal. In addition, LFA-1 ligation with ICAM-1 generates an additional Erk1/2 signal, which synergizes with the existing TCR-mediated Erk1/2 signal to enhance T cell activation. Thus, LFA-1 contributes to CD8+ T cell activation through two distinct signal pathways. We demonstrated that the function of LFA-1 is to enhance TCR signaling through the immunological synapse and deliver distinct signals in CD8+ T cell activation.Leukocyte function-associated antigen-1 (LFA-1)2 plays an important role in regulating leukocyte adhesion and T cell activation (1, 2). LFA-1 consists of the αL (CD11a) and β2 (CD18) subunits. The ligands for LFA-1 include intercellular adhesion molecular-1 (ICAM-1), ICAM-2, and ICAM-3 (3). LFA-1 participates in the formation of the immunological synapse, which regulates T cell activation synergistically with TCR engagement. The immunological synapse is a specialized structure that forms between the T cell and the APC or target cell (1, 2, 4). The function of the immunological synapse is to facilitate T cell activation and signal transduction. Mice deficient in LFA-1 (CD11a KO) have defects in leukocyte adhesion, lymphocyte proliferation, and tumor rejection (5–7).Upon TCR stimulation, the nascent immunological synapse is initiated with surface receptor clustering and cytoskeleton rearrangement, then followed by mature synapse formation after prolonged stimulation (8, 9). In the mature immunological synapse, LFA-1 forms a ring-like pattern at the peripheral supramolecular activation cluster (pSMAC), which surrounds the central supramolecular activation cluster (cSMAC) containing TCR/CD3/lipid rafts (10, 11). The structure of the mature synapse is stable for hours and thought to be important for sustained TCR signaling (12–14). LFA-1 functions via pSMAC to stabilize the cSMAC and is associated with the induction of T cell proliferation, cytokine production, and lytic granule migration toward cSMAC (1, 15). Although LFA-1-containing pSMAC is self-evident in lipid bilayer systems and cell lines, whether it is required for T cell activation under physiological conditions remains controversial (15).TCR stimulation rapidly induces the functional activity of LFA-1, which then provides unique LFA-1-dependent signals to promote T cell activation (16). The process can be divided into two steps. First, the intracellular signaling from TCR regulating LFA-1 activation is known as “inside-out” signaling; second, activated LFA-1, as a signaling receptor, can feedback to transduce the intracellular signal, the “outside-in” signaling (1, 17). It is widely accepted that TCR stimulation activates LFA-1 through affinity and/or avidity regulation, as supported by increased adhesion to ICAM-1 and pSMAC formation (16, 17). The “inside-out” signal process has been investigated extensively (18–21). The TCR proximal signal molecules, Lck, ZAP-70, and PI3K, are known to be important for TCR signaling to LFA-1 activation (22–26). The molecular mechanisms of LFA-1 “outside-in” signaling have been explored only recently. Perez et al. (27) have demonstrated that LFA-1 and ICAM-1 ligation activates the downstream Erk1/2 MAPK signaling pathway upon TCR stimulation, which ultimately leads to the qualitative modulation of CD4+ T cell activation through distinct LFA-1-dependent signals. Another recent study provided compelling evidence that LFA-1 reshapes the Ras MAPK pathway downstream of TCR (28). However, the detailed molecular pathways that regulate these processes are poorly defined. Especially, the evidence in support of a distinctive role for LFA-1 in the T cell signaling pathway has lagged behind; whether the function of LFA-1 is to enhance TCR signaling through the immunological synapse and/or deliver distinct signal in T cell activation and whether LFA-1 is indispensable for or merely assists the existing TCR signal pathway. Furthermore, whether and how TCR proximal signal molecules regulate LFA-1 function remains unknown. Further studies are required to understand the LFA-1 and TCR signaling network.In this study, we found that LFA-1 directly participates in CD8+ T cell activation. Upon TCR stimulation, LFA-1 regulates both TCR-mediated and LFA-1-mediated Erk1/2 signal pathways. First, the presence of LFA-1, not ligand binding, is required for the sustained Erk1/2 signaling and TCR/CD3 clustering on the surface of CD8+ T cells, subsequently leading to MTOC reorientation, cell cycle progression, and mitosis. Second, LFA-1 ligation with ICAM-1 enhances Erk1/2 signaling, which promotes T cell activation with increased IL-2 production and cell proliferation. This LFA-1-mediated Erk1/2 signal pathway integrates with the existing TCR-mediated Erk1/2 signal pathway to enhance T cell activation. 相似文献
12.
13.
14.
15.
Zvi Granot Avital Swisa Judith Magenheim Miri Stolovich-Rain Wakako Fujimoto Elisabetta Manduchi Takashi Miki Jochen K. Lennerz Christian J. Stoeckert Jr. Oded Meyuhas Susumu Seino M. Alan Permutt Helen Piwnica-Worms Nabeel Bardeesy Yuval Dor 《Cell metabolism》2009,10(4):285-308
Pancreatic β cells, organized in the islets of Langerhans, sense glucose and secrete appropriate amounts of insulin. We have studied the roles of LKB1, a conserved kinase implicated in the control of cell polarity and energy metabolism, in adult β cells. LKB1-deficient β cells show a dramatic increase in insulin secretion in vivo. Histologically, LKB1-deficient β cells have striking alterations in the localization of the nucleus and cilia relative to blood vessels, suggesting a shift from hepatocyte-like to columnar polarity. Additionally, LKB1 deficiency causes a 65% increase in β cell volume. We show that distinct targets of LKB1 mediate these effects. LKB1 controls β cell size, but not polarity, via the mTOR pathway. Conversely, the precise position of the β cell nucleus, but not cell size, is controlled by the LKB1 target Par1b. Insulin secretion and content are restricted by LKB1, at least in part, via AMPK. These results expose a molecular mechanism, orchestrated by LKB1, for the coordinated maintenance of β cell size, form, and function. 相似文献
16.
17.
18.
Shilpak Chatterjee Anusara Daenthanasanmak Paramita Chakraborty Megan W. Wyatt Payal Dhar Shanmugam Panneer Selvam Jianing Fu Jinyu Zhang Hung Nguyen Inhong Kang Kyle Toth Mazen Al-Homrani Mahvash Husain Gyda Beeson Lauren Ball Kristi Helke Shahid Husain Elizabeth Garrett-Mayer Shikhar Mehrotra 《Cell metabolism》2018,27(1):85-100.e8
19.
20.
Jianyun Yan Lu Zhang Jinshu Xu Nishat Sultana Jun Hu Xiaoqiang Cai Jun Li Pin-Xian Xu Chen-Leng Cai 《PloS one》2014,9(8)
Proper formation of ureteral smooth muscle cells (SMCs) during embryogenesis is essential for ureter peristalsis that propels urine from the kidney to the bladder in mammals. Currently the molecular factors that regulate differentiation of ureteral mesenchymal cells into SMCs are incompletely understood. A recent study has reported that Smad4 deficiency reduces the number of ureteral SMCs. However, its precise role in the ureteral smooth muscle development remains largely unknown. Here, we used Tbx18:Cre knock-in mouse line to delete Smad4 to examine its requirement in the development of ureteral mesenchyme and SMC differentiation. We found that mice with specific deletion of Smad4 in Tbx18-expressing ureteral mesenchyme exhibited hydroureter and hydronephrosis at embryonic day (E) 16.5, and the mutant mesenchymal cells failed to differentiate into SMCs with increased apoptosis and decreased proliferation. Molecular markers for SMCs including alpha smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) were absent in the mutant ureters. Moreover, disruption of Smad4 significantly reduced the expression of genes, including Sox9, Tbx18 and Myocardin associated with SMC differentiation. These findings suggest that Smad4 is essential for initiating the SMC differentiation program during ureter development. 相似文献