共查询到20条相似文献,搜索用时 0 毫秒
1.
Azubuike I. Okemefuna Ruodan Nan Tania Sadlon Stephen J. Perkins 《Journal of molecular biology》2009,391(1):119-735
Activation of C3 to C3b signals the start of the alternative complement pathway. The C-terminal short complement regulator (SCR)-20 domain of factor H (FH), the major serum regulator of C3b, possesses a binding site for C3d, a 35-kDa physiological fragment of C3b. Size distribution analyses of mixtures of SCR-16/20 or FH with C3d by analytical ultracentrifugation in 50 and 137 mM NaCl buffer revealed a range of discrete peaks, showing that multimeric complexes had formed at physiologically relevant concentrations. Surface plasmon resonance studies showed that native FH binds C3d in two stages. An equilibrium dissociation constant KD1 of 2.6 μM in physiological buffer was determined for the first stage. Overlay experiments indicated that C3d formed multimeric complexes with FH. X-ray scattering showed that the maximum dimension of the C3d complexes with SCR-16/20 at 29 nm was not much longer than that of the unbound SCR-16/20 dimer. Molecular modelling suggested that the ultracentrifugation and scattering data are most simply explained in terms of associating dimers of each of SCR-16/20 and C3d. We conclude that the physiological interaction between FH and C3d is not a simple 1:1 binding stoichiometry between the two proteins that is often assumed. Because the multimers involve the C-terminus of FH, which is bound to host cell surfaces, our results provide new insight on FH regulation during excessive complement activation, both in the fluid phase and at host cell surfaces decorated by C3d. 相似文献
2.
Staphylococcus aureus expresses numerous virulence factors that aid in immune evasion. The four-domain staphylococcal immunoglobulin binding (Sbi) protein interacts with complement component 3 (C3) and its thioester domain (C3d)-containing fragments. Recent structural data suggested two possible modes of binding of Sbi domain IV (Sbi-IV) to C3d, but the physiological binding mode remains unclear. We used a computational approach to provide insight into the C3d-Sbi-IV interaction. Molecular dynamics (MD) simulations showed that the first binding mode (PDB code 2WY8) is more robust than the second (PDB code 2WY7), with more persistent polar and nonpolar interactions, as well as conserved interfacial solvent accessible surface area. Brownian dynamics and steered MD simulations revealed that the first binding mode has faster association kinetics and maintains more stable intermolecular interactions compared to the second binding mode. In light of available experimental and structural data, our data confirm that the first binding mode represents Sbi-IV interaction with C3d (and C3) in a physiological context. Although the second binding mode is inherently less stable, we suggest a possible physiological role. Both binding sites may serve as a template for structure-based design of novel complement therapeutics. 相似文献
3.
Staphylococcus aureus expresses numerous virulence factors that aid in immune evasion. The four-domain staphylococcal immunoglobulin binding (Sbi) protein interacts with complement component 3 (C3) and its thioester domain (C3d)-containing fragments. Recent structural data suggested two possible modes of binding of Sbi domain IV (Sbi-IV) to C3d, but the physiological binding mode remains unclear. We used a computational approach to provide insight into the C3d-Sbi-IV interaction. Molecular dynamics (MD) simulations showed that the first binding mode (PDB code 2WY8) is more robust than the second (PDB code 2WY7), with more persistent polar and nonpolar interactions, as well as conserved interfacial solvent accessible surface area. Brownian dynamics and steered MD simulations revealed that the first binding mode has faster association kinetics and maintains more stable intermolecular interactions compared to the second binding mode. In light of available experimental and structural data, our data confirm that the first binding mode represents Sbi-IV interaction with C3d (and C3) in a physiological context. Although the second binding mode is inherently less stable, we suggest a possible physiological role. Both binding sites may serve as a template for structure-based design of novel complement therapeutics. 相似文献
4.
Michal Potempa Jan Potempa Tomasz Kantyka Ky-Anh Nguyen Katarzyna Wawrzonek Surya P. Manandhar Katarzyna Popadiak Kristian Riesbeck Sigrun Eick Anna M. Blom 《PLoS pathogens》2009,5(2)
Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the α-chain of C3—the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia. 相似文献
5.
Jonathan P. Hannan Jennifer Laskowski Joshua M. Thurman Gregory S. Hageman V. Michael Holers 《PloS one》2016,11(11)
Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. 相似文献
6.
Christian Ehrnthaller Markus Huber-Lang Per Nilsson Ronny Bindl Simon Redeker Stefan Recknagel Anna Rapp Tom Mollnes Michael Amling Florian Gebhard Anita Ignatius 《PloS one》2013,8(11)
There is increasing evidence that complement may play a role in bone development. Our previous studies demonstrated that the key complement receptor C5aR was strongly expressed in the fracture callus not only by immune cells but also by bone cells and chondroblasts, indicating a function in bone repair. To further elucidate the role of complement in bone healing, this study investigated fracture healing in mice in the absence of the key complement molecules C3 and C5. C3-/- and C5-/- as well as the corresponding wildtype mice received a standardized femur osteotomy, which was stabilized using an external fixator. Fracture healing was investigated after 7 and 21 days using histological, micro-computed tomography and biomechanical measurements. In the early phase of fracture healing, reduced callus area (C3-/-: -25%, p=0.02; C5-/-: -20% p=0.052) and newly formed bone (C3-/-: -38%, p=0.01; C5-/-: -52%, p=0.009) was found in both C3- and C5-deficient mice. After 21 days, healing was successful in the absence of C3, whereas in C5-deficient mice fracture repair was significantly reduced, which was confirmed by a reduced bending stiffness (-45%; p=0.029) and a smaller callus volume (-17%; p=0.039). We further demonstrated that C5a was activated in C3-/- mice, suggesting cleavage via extrinsic pathways. Our results suggest that the activation of the terminal complement cascade in particular may be crucial for successful fracture healing. 相似文献
7.
Katrin Haupt Michael Reuter Jean van den Elsen Julia Burman Steffi H?lbich Julia Richter Christine Skerka Peter F. Zipfel 《PLoS pathogens》2008,4(12)
The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1) from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG) as a ligand that interacts with Factor H by a—to our knowledge—new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite Sbi∶C3∶Factor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and β2-glycoprotein I and interferes with innate immune recognition. 相似文献
8.
Henrik Nausch Heike Mischofsky Roswitha Koslowski Udo Meyer Inge Broer Jana Huckauf 《PloS one》2012,7(12)
We evaluated transgenic tobacco plants as an alternative to Escherichia coli for the production of recombinant human complement factor 5a (C5a). C5a has not been expressed in plants before and is highly unstable in vivo in its native form, so it was necessary to establish the most suitable subcellular targeting strategy. We used the strong and constitutive CaMV 35S promoter to drive transgene expression and compared three different subcellular compartments. The yields of C5a in the T0 transgenic plants were low in terms of the proportion of total soluble protein (TSP) when targeted to the apoplast (0.0002% TSP) or endoplasmic reticulum (0.0003% TSP) but was one order of magnitude higher when targeted to the vacuole (0.001% TSP). The yields could be increased by conventional breeding (up to 0.014% TSP in the T2 generation). C5a accumulated to the same level in seeds and leaves when targeted to the apoplast but was up to 1.7-fold more abundant in the seeds when targeted to the ER or vacuole, although this difference was less striking in the better-performing lines. When yields were calculated as an amount per gram fresh weight of transgenic plant tissue, the vacuole targeting strategy was clearly more efficient in seeds, reaching 35.8 µg C5a per gram of fresh seed weight compared to 10.62 µg C5a per gram fresh weight of leaves. Transient expression of C5aER and C5aVac in N. benthamiana, using MagnICON vectors, reached up to 0.2% and 0.7% of TSP, respectively, but was accompanied by cytotoxic effects and induced leaf senescence. Western blot of the plant extracts revealed a band matching the corresponding glycosylated native protein and the bioassay demonstrated that recombinant C5a was biologically active. 相似文献
9.
Selena K. Tavener Dennis E. Jewell Kiran S. Panickar 《Current issues in molecular biology》2022,44(4):1664
Chronic low-grade inflammation is a key contributor to the progression of kidney disease. The release of cytokines and other pro-inflammatory proteins may further contribute to detrimental kidney health by increasing interstitial edema and renal fibrosis. The aim of the present study was to investigate the inflammatory markers in canines who developed renal disease naturally and were diagnosed with renal disease either during life or following necropsy, as assessed by a veterinarian. RNA was isolated from canine blood obtained at necropsy and stored as bioarchived samples from ten canines with renal disease (9.6–14.7 yr) and ten controls (10.1–14.8 yr). At the time of death, the mean blood creatinine concentration and BUN were elevated in dogs with renal disease compared to control (both p < 0.01). Samples were assessed for changes in gene expression using the Canine cytokine RT2 Profiler PCR Array for inflammation. There was a significant increase in C-C Motif Chemokine Ligand 16 (CCL16), C-X-C Motif Chemokine Ligand 5 (CXCL5), Interleukin 16 (IL-16), and Complement Component 5 (C5) (all p < 0.05 vs. con). In addition, there was also a statistically non-significant increase in 49 genes and a down-regulation in 35 genes from a panel of total 84 genes. Pro-inflammatory genes including CCL16, CXCL5, IL-16, and C5 can all contribute to renal inflammation and fibrosis through different signaling pathways and may lead to a progressive impairment of kidney function. Blockade of their activation may be important in ameliorating the initiation and/or the progression of renal disease. 相似文献
10.
Kolla RV Chintalapati S Sabet M Santelli E Liddington RC David M Fierer J Guiney D Rickert RC 《PloS one》2007,2(10):e1044
B. anthracis is the causative agent of anthrax. Pathogenesis is primarily mediated through the exotoxins lethal factor and edema factor, which bind protective antigen (PA) to gain entry into the host cell. The current anthrax vaccine (AVA, Biothrax) consists of aluminum-adsorbed cell-free filtrates of unencapsulated B. anthracis, wherein PA is thought to be the principle target of neutralization. In this study, we evaluated the efficacy of the natural adjuvant, C3d, versus alum in eliciting an anti-PA humoral response and found that C3d conjugation to PA and emulsion in incomplete Freund's adjuvant (IFA) imparted superior protection from anthrax challenge relative to PA in IFA or PA adsorbed to alum. Relative to alum-PA, immunization of mice with C3d-PA/IFA augmented both the onset and sustained production of PA-specific antibodies, including neutralizing antibodies to the receptor-binding portion (domain 4) of PA. C3d-PA/IFA was efficacious when administered either i.p. or s.c., and in adolescent mice lacking a fully mature B cell compartment. Induction of PA-specific antibodies by C3d-PA/IFA correlated with increased efficiency of germinal center formation and plasma cell generation. Importantly, C3d-PA immunization effectively protected mice from intranasal challenge with B. anthracis spores, and was approximately 10-fold more effective than alum-PA immunization or PA/IFA based on dose challenge. These data suggest that incorporation of C3d as an adjuvant may overcome shortcomings of the currently licensed aluminum-based vaccine, and may confer protection in the early days following acute anthrax exposure. 相似文献
11.
12.
C3 and C5 convertases are central stages of the complement cascade since they converge the different initiation pathways, augment complement activation by an amplification loop and lead to a common terminal pathway resulting in the formation of the membrane attack complex. Several complement inhibitors attenuate convertase formation and/or accelerate dissociation of convertase complexes. Functional assays used to study these processes are often performed using purified complement components, from which enzymatic complexes are reconstituted on the surface of erythrocytes or artificial matrices. This strategy enables identification of individual interactions between convertase components and putative regulators but carries an inherent risk of detecting non-physiological interactions that would not occur in a milieu of whole serum. Here we describe a novel, alternative method based on C3 or C5-depleted sera, which support activation of the complement cascade up to the desired stages of convertases. This approach allows fast and simple assessment of the influence of putative regulators on convertase formation and stability. As an example of practical utility of the assay, we performed studies on thioredoxin-1 in order to clarify the mechanism of its influence on complement convertases. 相似文献
13.
摘要 目的:研究系统性红斑狼疮(SLE)患者血小板参数、血脂、补体C3、C4水平与病情活动度的关系。方法:将从2011年1月~2018年1月我院收治的100例SLE患者纳入研究,将其按照SEL疾病活动指数(SLEDAI)评分的不同分成活动组(SLEDAI评分≥10分)36例,非活动组(SLEDAI评分<10分)64例,另取同期于我院进行体检的健康志愿者100例作为对照组。比较三组各项血小板参数、血脂指标以及补体C3、C4水平,采用Pearson相关性分析SLE患者SLEDAI评分与各项指标的相关性。结果:活动组、非活动组血小板计数(PLT)、血小板压积、大血小板百分率低于对照组,且活动组PLT、大血小板百分率低于非活动组(P<0.05)。活动组、非活动组血小板平均容积(MPV)、血小板体积分布宽度(PDW)高于对照组,且活动组高于非活动组(P<0.05)。活动组、非活动组低密度脂蛋白胆固醇(LDL-C)均高于对照组,高密度脂蛋白胆固醇(HDL-C)均低于对照组(P<0.05),活动组HDL-C低于非活动组(P<0.05)。活动组、非活动组补体C3、C4水平均低于对照组,且活动组补体C3、C4水平均低于非活动组(P<0.05)。经Pearson相关性分析发现:SLE患者SLEDAI评分与PLT、大血小板百分率、HDL-C以及补体C3、C4水平呈负相关,与MPV、PDW呈正相关(P<0.05)。结论:SLE患者血小板参数PLT、大血小板百分率、血脂指标HDL-C以及补体C3、C4水平与SLEDAI评分密切相关,可能作为SLE患者疾病活动性的评估指标。 相似文献
14.
The nutritional role of silver for the freshwater crustacean, Daphnia magna, was examined through four generations of deprivation. Silver inclusion in animal media was set at a nominal zero (employing
chemicals of the highest available purity). Both reproduction (−60%) and life span (−40%) were negatively affected when compared
to animals reared in the presence of 0.4 ng g−1 Ag. These results strongly suggest a nutritional requirement of silver for daphnids at nanomolar concentrations. 相似文献
15.
Javdani Moosa Habibi Atefeh Shirian Sadegh Kojouri Gholam Ali Hosseini Farzaneh 《Biological trace element research》2019,187(1):202-211
Biological Trace Element Research - Selenium is known to be a neuroprotective agent in respect to a number of neuronal diseases and pain. The aim of this study was to evaluate the neuroprotective... 相似文献
16.
Xiaobo Yang Jielin Sun Yong Gao Aihua Tan Haiying Zhang Yanling Hu Junjie Feng Xue Qin Sha Tao Zhuo Chen Seong-Tae Kim Tao Peng Ming Liao Xiaoling Lin Zengfeng Zhang Minzhong Tang Li Li Linjian Mo Zhengjia Liang Deyi Shi Zhang Huang Xianghua Huang Ming Liu Qian Liu Shijun Zhang Jeffrey M. Trent S. Lilly Zheng Jianfeng Xu Zengnan Mo 《PLoS genetics》2012,8(9)
Complement C3 and C4 play key roles in the main physiological activities of complement system, and their deficiencies or over-expression are associated with many clinical infectious or immunity diseases. A two-stage genome-wide association study (GWAS) was performed for serum levels of C3 and C4. The first stage was conducted in 1,999 healthy Chinese men, and the second stage was performed in an additional 1,496 subjects. We identified two SNPs, rs3753394 in CFH gene and rs3745567 in C3 gene, that are significantly associated with serum C3 levels at a genome-wide significance level (P = 7.33×10−11 and P = 1.83×10−9, respectively). For C4, one large genomic region on chromosome 6p21.3 is significantly associated with serum C4 levels. Two SNPs (rs1052693 and rs11575839) were located in the MHC class I area that include HLA-A, HLA-C, and HLA-B genes. Two SNPs (rs2075799 and rs2857009) were located 5′ and 3′ of C4 gene. The other four SNPs, rs2071278, rs3763317, rs9276606, and rs241428, were located in the MHC class II region that includes HLA-DRA, HLA-DRB, and HLA-DQB genes. The combined P-values for those eight SNPs ranged from 3.19×10−22 to 5.62×10−97. HBsAg-positive subjects have significantly lower C3 and C4 protein concentrations compared with HBsAg-negative subjects (P<0.05). Our study is the first GWAS report which shows genetic components influence the levels of complement C3 and C4. Our significant findings provide novel insights of their related autoimmune, infectious diseases, and molecular mechanisms. 相似文献
17.
The influence of zinc (Zn) on the serum levels of triiodothyronine (T3), thyroxine (T4), thyroid-stimulating hormone (TSH) and sodium (Na), potassium (K), and calcium (Ca) was evaluated following ethanol toxicity
to the rats. To achieve this, male Wistar rats (150–195 g) were given 3 ml of 30% ethanol orally, and zinc was given in the
form of zinc sulfate (227 mg/l) in their drinking water daily for 8 weeks. Ethanol feeding resulted in a slight decrease in T3 and T4 levels and a significant increase in thyroid-stimulating hormone concentration, which may be due to the direct stimulatory
effect of ethanol on thyroid. Interestingly, when zinc was given to these rats, all the above levels were brought quite close
to their normal levels, thus indicating the positive role of zinc in thyroid hormone metabolism. Serum Zn and Ca levels were
found to be reduced, but Na levels were raised upon ethanol feeding. Restoration of normal levels of these metals upon zinc
supplementation to ethanol fed rats confirms that zinc has potential in alleviating some of the altered thyroid functions
following ethanol administration. 相似文献
18.
The interaction between complement fragment C3d and complement receptor 2 (CR2) is a key aspect of complement immune system activation, and is a component in a link between innate and adaptive immunities. The complement immune system is an ancient mechanism for defense, and can be found in species that have been on Earth for the last 600 million years. However, the link between the complement system and adaptive immunity, which is formed through the association of the B-cell co-receptor complex, including the C3d-CR2 interaction, is a much more recent adaptation. Human C3d and CR2 have net charges of −1 and +7 respectively, and are believed to have evolved favoring the role of electrostatics in their functions. To investigate the role of electrostatics in the function and evolution of human C3d and CR2, we have applied electrostatic similarity methods to identify regions of evolutionarily conserved electrostatic potential based on 24 homologues of complement C3d and 4 homologues of CR2. We also examine the effects of structural perturbation, as introduced through molecular dynamics and mutations, on spatial distributions of electrostatic potential to identify perturbation resistant regions, generated by so-called electrostatic “hot-spots”. Distributions of electrostatic similarity based on families of perturbed structures illustrate the presence of electrostatic “hot-spots” at the two functional sites of C3d, while the surface of CR2 lacks electrostatic “hot-spots” despite its excessively positive nature. We propose that the electrostatic “hot-spots” of C3d have evolved to optimize its dual-functionality (covalently attaching to pathogen surfaces and interaction with CR2), which are both necessary for the formation B-cell co-receptor complexes. Comparison of the perturbation resistance of the electrostatic character of the homologues of C3d suggests that there was an emergence of a new role of electrostatics, and a transition in the function of C3d, after the divergence of jawless fish. 相似文献
19.
Cytosine-rich DNA at low pH adopts an antiparallel tetraplex structure via the intercalation of two partially protonated, parallel stranded duplexes. This intriguing structural motif has been named i-DNA. We have used a combination of spectroscopic and calorimetric techniques to characterize the properties of an intermolecular i-DNA formed by d(TC(5)) and an intramolecular i-DNA formed by d[(C(5)T(3))(3)C(5)]. Our measurements reveal that both i-DNA complexes are enthalpically stabilized by 6.5-7.0 kcal/mol(base) and entropically destabilized by 20 cal/mol(base)/K. These values are about 50% larger than the corresponding enthalpy and entropy values per base for Watson and Crick duplexes and for Hoogsteen triplexes, while being similar to per base enthalpy and entropy values reported for G-quadruplexes. Our data also reveal a positive heat capacity change between 20 and 30 cal/mol(base)/K, values similar to that reported for polymeric Watson & Crick DNA duplexes. Solution-dependent studies reveal the overall thermal and thermodynamic stability of i-DNA complexes to be dictated by an interplay between pH and ionic strength. Based on the thermodynamic data measured, we discuss the feasibility of i-DNA formation in the context of conventional DNA sequences, while commenting on potential roles for this structural motif in biological regulatory mechanisms. 相似文献
20.
We previously reported that pretreatment of murine cortico-hippocampal neuronal cultures with the complement-derived anaphylatoxin C5a, protects against glutamate neurotoxicity. In this study we explored the potential mechanisms involved in C5a-mediated neuroprotection. We found that C5a neuroprotects in vitro through inhibition of apoptotic death because pretreatment with human recombinant (hr)C5a prevented nuclear DNA fragmentation coincidental to inhibition of the pro-apoptotic caspase 3 activity mediated by glutamate treatment. Also, hrC5a-mediated responses appeared to be receptor-mediated because pretreatment of cultures with the specific C5a receptor antagonist C177, prevented hrC5a-mediated neuroprotection. Based on this evidence, we further explored possible signaling pathways involved in hrC5a inhibition of caspase 3 activation and apoptotic neuronal death. We found that treatment of cultures with the mitogen-activated protein kinase (MAPK) pathway inhibitor PD98059 prevented hrC5a-mediated inhibition of caspase 3 and apoptotic neuron death. MAPK pathways, whose activation by hrC5a is inhibited by PD98059 and C177, include the extracellular signal-regulated kinase (ERK)2 and, to a lesser extent, ERK1. The study suggests that C5a may protect against glutamate-induced apoptosis in neurons through MAPK-mediated regulation of caspase cascades. 相似文献