首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic resonance (MR) diffusion tensor imaging (DTI) has emerged as a unique technique to reveal small anatomical structures of brain by characterizing the diffusion process of water molecules within an image voxel. Combined with fiber tractography techniques, DTI can be further used to reveal white matter fibers and connectivity in the brain non-invasively. The non-human primate brain study provides important supplemental means for human brain exploration since the two species share close anatomical and functional similarities. There is therefore increasing interest in in vivo non-human primate DTI studies. However, several technical challenges need to be addressed to perform non-human primate brain DTI and fiber tractography. We have established an imaging protocol together with a post-acquisition procedure for high-resolution in vivo non-human primate DTI studies using a 3T human clinical scanner. Data acquired with this procedure is appropriate for accurate diffusion tensor quantification and fiber tractography, and is accessible within an acceptable scan time. We investigated in detail the effects of spatial resolution and SNR on diffusion tensor-derived quantities and fiber tractography. Our results should be of general utility for implementation of in vivo non-human primate DTI studies.  相似文献   

2.
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. Diffusion MRI studies have revealed the efficient small-world properties and modular structure of the anatomical network in normal subjects. However, no previous study has used diffusion MRI to reveal changes in the brain anatomical network in early blindness. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 17 early blind subjects and 17 age- and gender-matched sighted controls. We established the existence of structural connections between any pair of the 90 cortical and sub-cortical regions using deterministic tractography. Compared with controls, early blind subjects showed a decreased degree of connectivity, a reduced global efficiency, and an increased characteristic path length in their brain anatomical network, especially in the visual cortex. Moreover, we revealed some regions with motor or somatosensory function have increased connections with other brain regions in the early blind, which suggested experience-dependent compensatory plasticity. This study is the first to show alterations in the topological properties of the anatomical network in early blindness. From the results, we suggest that analyzing the brain''s anatomical network obtained using diffusion MRI data provides new insights into the understanding of the brain''s re-organization in the specific population with early visual deprivation.  相似文献   

3.
4.
For detailed analyses of muscle adaptation mechanisms during growth, ageing or disease, reliable measurements of muscle architecture are required. Diffusion tensor imaging (DTI) and DTI tractography have been used to reconstruct the architecture of human muscles in vivo. However, muscle architecture measurements reconstructed with conventional DTI techniques are often anatomically implausible because the reconstructed fascicles do not terminate on aponeuroses, as real muscle fascicles are known to do. In this study, we tested the reliability of an anatomically constrained DTI-based method for measuring three-dimensional muscle architecture. Anatomical magnetic resonance images and diffusion tensor images were obtained from the left legs of eight healthy participants on two occasions one week apart. Muscle volumes, fascicle lengths, pennation angles and fascicle curvatures were measured in the medial and lateral gastrocnemius, soleus and the tibialis anterior muscles. Averaged across muscles, the intraclass correlation coefficient was 0.99 for muscle volume, 0.81 for fascicle length, 0.73 for pennation angle and 0.76 for fascicle curvature. Measurements of muscle architecture obtained using conventional DTI tractography were highly sensitive to variations in the stopping criteria for DTI tractography. The application of anatomical constraints reduced this sensitivity significantly. This study demonstrates that anatomically constrained DTI tractography can provide reliable and robust three-dimensional measurements of whole-muscle architecture. The algorithms used to constrain tractography have been made publicly available.  相似文献   

5.

Rationale

Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we evaluated how these variables affect the reproducibility of the structural connectome.

Methods

Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner and a third time in a different scanner unit) within a short period of time. The scanning sessions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tractography was performed to assess link weight based on the number of fibers connecting gray matter regions of interest (ROI). Link weight and graph theory network measures were calculated and reproducibility was assessed through intra-class correlation coefficients, assuming each scanning session as a rater.

Results

Connectome reproducibility was higher with data from the same scanner. The probabilistic approach yielded larger reproducibility, while the individual variation in the number of tracked fibers from deterministic tractography was negatively associated with reproducibility. Links connecting larger and anatomically closer ROIs demonstrated higher reproducibility. In general, graph theory measures demonstrated high reproducibility across scanning sessions.

Discussion

Anatomical factors and tractography approaches can influence the reproducibility of the structural connectome and should be factored in the interpretation of future studies. Our results demonstrate that connectome mapping is a largely reproducible technique, particularly as it relates to the geometry of network architecture measured by graph theory methods.  相似文献   

6.
Diffusion tensor imaging (DTI) tractography provides noninvasive measures of structural cortico-cortical connectivity of the brain. However, the agreement between DTI-tractography-based measures and histological ‘ground truth’ has not been quantified. In this study, we reconstructed the 3D density distribution maps (DDM) of fibers labeled with an anatomical tracer, biotinylated dextran amine (BDA), as well as DTI tractography-derived streamlines connecting the primary motor (M1) cortex to other cortical regions in the squirrel monkey brain. We evaluated the agreement in M1-cortical connectivity between the fibers labeled in the brain tissue and DTI streamlines on a regional and voxel-by-voxel basis. We found that DTI tractography is capable of providing inter-regional connectivity comparable to the neuroanatomical connectivity, but is less reliable measuring voxel-to-voxel variations within regions.  相似文献   

7.
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.  相似文献   

8.
Zhao X  Liu Y  Wang X  Liu B  Xi Q  Guo Q  Jiang H  Jiang T  Wang P 《PloS one》2012,7(3):e33540
The small-world organization has been hypothesized to reflect a balance between local processing and global integration in the human brain. Previous multimodal imaging studies have consistently demonstrated that the topological architecture of the brain network is disrupted in Alzheimer's disease (AD). However, these studies have reported inconsistent results regarding the topological properties of brain alterations in AD. One potential explanation for these inconsistent results lies with the diverse homogeneity and distinct progressive stages of the AD involved in these studies, which are thought to be critical factors that might affect the results. We investigated the topological properties of brain functional networks derived from resting functional magnetic resonance imaging (fMRI) of carefully selected moderate AD patients and normal controls (NCs). Our results showed that the topological properties were found to be disrupted in AD patients, which showing increased local efficiency but decreased global efficiency. We found that the altered brain regions are mainly located in the default mode network, the temporal lobe and certain subcortical regions that are closely associated with the neuropathological changes in AD. Of note, our exploratory study revealed that the ApoE genotype modulates brain network properties, especially in AD patients.  相似文献   

9.
Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study.  相似文献   

10.
We studied a sample of 75 Chinese, 73 Malay, and 29 Indian healthy neonates taking part in a cohort study to examine potential differences in neonatal brain morphology and white matter microstructure as a function of ethnicity using both structural T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). We first examined the differences in global size and morphology of the brain among the three groups. We then constructed the T2-weighted MRI and DTI atlases and employed voxel-based analysis to investigate ethnic differences in morphological shape of the brain from the T2-weighted MRI, and white matter microstructure measured by fractional anisotropy derived from DTI. Compared with Malay neonates, the brains of Indian neonates’ tended to be more elongated in anterior and posterior axis relative to the superior-inferior axis of the brain even though the total brain volume was similar among the three groups. Although most anatomical regions of the brain were similar among Chinese, Malay, and Indian neonates, there were anatomical variations in the spinal-cerebellar and cortical-striatal-thalamic neural circuits among the three populations. The population-related brain regions highlighted in our study are key anatomical substrates associated with sensorimotor functions.  相似文献   

11.
The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI) is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI), can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA) of DTI and generalized fractional anisotropy (GFA) of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA) of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain DTI and GQI database could also be used for educational purposes and neuroscience investigations.  相似文献   

12.
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.  相似文献   

13.
Tuch DS  Reese TG  Wiegell MR  Wedeen VJ 《Neuron》2003,40(5):885-895
While functional brain imaging methods can locate the cortical regions subserving particular cognitive functions, the connectivity between the functional areas of the human brain remains poorly understood. Recently, investigators have proposed a method to image neural connectivity noninvasively using a magnetic resonance imaging method called diffusion tensor imaging (DTI). DTI measures the molecular diffusion of water along neural pathways. Accurate reconstruction of neural connectivity patterns from DTI has been hindered, however, by the inability of DTI to resolve more than a single axon direction within each imaging voxel. Here, we present a novel magnetic resonance imaging technique that can resolve multiple axon directions within a single voxel. The technique, called q-ball imaging, can resolve intravoxel white matter fiber crossing as well as white matter insertions into cortex. The ability of q-ball imaging to resolve complex intravoxel fiber architecture eliminates a key obstacle to mapping neural connectivity in the human brain noninvasively.  相似文献   

14.
Liang X  Wang J  Yan C  Shu N  Xu K  Gong G  He Y 《PloS one》2012,7(3):e32766
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.  相似文献   

15.
The study of complex computational systems is facilitated by network maps, such as circuit diagrams. Such mapping is particularly informative when studying the brain, as the functional role that a brain area fulfills may be largely defined by its connections to other brain areas. In this report, we describe a novel, non-invasive approach for relating brain structure and function using magnetic resonance imaging (MRI). This approach, a combination of structural imaging of long-range fiber connections and functional imaging data, is illustrated in two distinct cognitive domains, visual attention and face perception. Structural imaging is performed with diffusion-weighted imaging (DWI) and fiber tractography, which track the diffusion of water molecules along white-matter fiber tracts in the brain (Figure 1). By visualizing these fiber tracts, we are able to investigate the long-range connective architecture of the brain. The results compare favorably with one of the most widely-used techniques in DWI, diffusion tensor imaging (DTI). DTI is unable to resolve complex configurations of fiber tracts, limiting its utility for constructing detailed, anatomically-informed models of brain function. In contrast, our analyses reproduce known neuroanatomy with precision and accuracy. This advantage is partly due to data acquisition procedures: while many DTI protocols measure diffusion in a small number of directions (e.g., 6 or 12), we employ a diffusion spectrum imaging (DSI)1, 2 protocol which assesses diffusion in 257 directions and at a range of magnetic gradient strengths. Moreover, DSI data allow us to use more sophisticated methods for reconstructing acquired data. In two experiments (visual attention and face perception), tractography reveals that co-active areas of the human brain are anatomically connected, supporting extant hypotheses that they form functional networks. DWI allows us to create a "circuit diagram" and reproduce it on an individual-subject basis, for the purpose of monitoring task-relevant brain activity in networks of interest.  相似文献   

16.
Mori S  Zhang J 《Neuron》2006,51(5):527-539
The brain contains more than 100 billion neurons that communicate with each other via axons for the formation of complex neural networks. The structural mapping of such networks during health and disease states is essential for understanding brain function. However, our understanding of brain structural connectivity is surprisingly limited, due in part to the lack of noninvasive methodologies to study axonal anatomy. Diffusion tensor imaging (DTI) is a recently developed MRI technique that can measure macroscopic axonal organization in nervous system tissues. In this article, the principles of DTI methodologies are explained, and several applications introduced, including visualization of axonal tracts in myelin and axonal injuries as well as human brain and mouse embryonic development. The strengths and limitations of DTI and key areas for future research and development are also discussed.  相似文献   

17.
We derive the Iterative Confidence Enhancement of Tractography (ICE-T) framework to address the problem of path-length dependency (PLD), the streamline dispersivity confound inherent to probabilistic tractography methods. We show that PLD can arise as a non-linear effect, compounded by tissue complexity, and therefore cannot be handled using linear correction methods. ICE-T is an easy-to-implement framework that acts as a wrapper around most probabilistic streamline tractography methods, iteratively growing the tractography seed regions. Tract networks segmented with ICE-T can subsequently be delineated with a global threshold, even from a single-voxel seed. We investigated ICE-T performance using ex vivo pig-brain datasets where true positives were known via in vivo tracers, and applied the derived ICE-T parameters to a human in vivo dataset. We examined the parameter space of ICE-T: the number of streamlines emitted per voxel, and a threshold applied at each iteration. As few as 20 streamlines per seed-voxel, and a robust range of ICE-T thresholds, were shown to sufficiently segment the desired tract network. Outside this range, the tract network either approximated the complete white-matter compartment (too low threshold) or failed to propagate through complex regions (too high threshold). The parameters were shown to be generalizable across seed regions. With ICE-T, the degree of both near-seed flare due to false positives, and of distal false negatives, are decreased when compared with thresholded probabilistic tractography without ICE-T. Since ICE-T only addresses PLD, the degree of remaining false-positives and false-negatives will consequently be mainly attributable to the particular tractography method employed. Given the benefits offered by ICE-T, we would suggest that future studies consider this or a similar approach when using tractography to provide tract segmentations for tract based analysis, or for brain network analysis.  相似文献   

18.
The relation between brain structure and function is of fundamental importance in neuroscience. Comparisons between behavioral and brain-imaging measures suggest that variation in brain structure correlates with the presence of specific skills. Behavioral measures, however, reflect the integrated function of multiple brain regions. Rather than behavior, a physiological index of function could be a more sensitive and informative measure with which to compare structural measures. Here, we test for a relationship between a physiological measure of functional connectivity between two brain areas during a simple decision-making task and a measure of structural connectivity. Paired-pulse transcranial magnetic stimulation indexed functional connectivity between two regions important for action choices: the premotor and motor cortex. Fractional anisotropy (FA), a marker of microstructural integrity, indexed structural connectivity. Individual differences in functional connectivity during action selection show highly specific correlations with FA in localized regions of white-matter interconnecting regions, including the premotor and motor cortex. Probabilistic tractography, a technique for identifying fiber pathways from diffusion-weighted imaging (DWI), was used to reconstruct the anatomical networks linking the component brain regions involved in making decisions. These findings demonstrate a relationship between individual differences in functional and structural connectivity within human brain networks central to action choice.  相似文献   

19.
Li Y  Du H  Xie B  Wu N  Wang J  Wu G  Feng H  Jiang T 《PloS one》2010,5(12):e15219
Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS.  相似文献   

20.
Ding JR  Liao W  Zhang Z  Mantini D  Xu Q  Wu GR  Lu G  Chen H 《PloS one》2011,6(10):e26596
Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号