首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

Recent studies have revealed relative frequency and characteristic phenotype of two major causative factors for Silver-Russell syndrome (SRS), i.e. epimutation of the H19-differentially methylated region (DMR) and uniparental maternal disomy 7 (upd(7)mat), as well as multilocus methylation abnormalities and positive correlation between methylation index and body and placental sizes in H19-DMR epimutation. Furthermore, rare genomic alterations have been found in a few of patients with idiopathic SRS. Here, we performed molecular and clinical findings in 138 Japanese SRS patients, and examined these matters.

Methodology/Principal Findings

We identified H19-DMR epimutation in cases 1–43 (group 1), upd(7)mat in cases 44–52 (group 2), and neither H19-DMR epimutation nor upd(7)mat in cases 53–138 (group 3). Multilocus analysis revealed hyper- or hypomethylated DMRs in 2.4% of examined DMRs in group 1; in particular, an extremely hypomethylated ARHI-DMR was identified in case 13. Oligonucleotide array comparative genomic hybridization identified a ∼3.86 Mb deletion at chromosome 17q24 in case 73. Epigenotype-phenotype analysis revealed that group 1 had more reduced birth length and weight, more preserved birth occipitofrontal circumference (OFC), more frequent body asymmetry and brachydactyly, and less frequent speech delay than group 2. The degree of placental hypoplasia was similar between the two groups. In group 1, the methylation index for the H19-DMR was positively correlated with birth length and weight, present height and weight, and placental weight, but with neither birth nor present OFC.

Conclusions/Significance

The results are grossly consistent with the previously reported data, although the frequency of epimutations is lower in the Japanese SRS patients than in the Western European SRS patients. Furthermore, the results provide useful information regarding placental hypoplasia in SRS, clinical phenotypes of the hypomethylated ARHI-DMR, and underlying causative factors for idiopathic SRS.  相似文献   

3.
Sperm DNA injury is one of the common causes of male infertility. Folic acid deficiency would increase the methylation level of the important genes, including those involved in DNA double‐strand break (DSB) repair pathway. In the early stages, we analysed the correlation between seminal plasma folic acid concentration and semen parameters in 157 infertility patients and 91 sperm donor volunteers, and found that there was a significant negative correlation between seminal folic acid concentration and sperm DNA Fragmentation Index (DFI; r = −0.495, p < 0.01). Then through reduced representation bisulphite sequencing, global DNA methylation of sperm of patients in the low folic acid group and the high folic acid group was analysed, it was found that the methylation level in Rad54 promoter region increased in the folic acid deficiency group compared with the normal folic acid group. Meanwhile, the results of animal model and spermatocyte line (GC‐2) also found that folic acid deficiency can increase the methylation level in Rad54 promoter region, increased sperm DFI in mice, increased the expression of γ‐H2AX, that is, DNA injury marker protein, and increased sensitivity of GC‐2 to external damage and stimulation. The study indicates that the expression of Rad54 is downregulated by folic acid deficiency via DNA methylation. This may be one of the mechanisms of sperm DNA damage caused by folate deficiency.  相似文献   

4.
5.
Klotho (KL) expression is down-regulated in the renal tissues of chronic kidney disease (CKD) animal models and patients with end-stage renal disease. The putative role of KL promoter hypermethylation in the progression of CKD remains unclear. The present study aimed to determine renal and peripheral blood mononuclear cells (PBMC) levels of KL promoter methylation and analyze their relationship with clinical and histological severity in patients with CKD. Using bisulfite pyrosequencing, renal and PBMC levels of KL promoter methylation were quantified in 47 patients with CKD. 47 nephrectomy specimens of patients with renal cell carcinoma and 48 PBMC specimens of healthy volunteers were used as renal tissue and PBMC controls, respectively. Renal expression of KL protein was assayed by immunohistochemistry staining. Receiver operating characteristic (ROC) curve was used to identify the optimal cut-off value of PBMC KL promoter methylation level for renal KL promoter hypermethylation. Higher levels of KL promoter methylation were observed in renal tissue and PBMC in patients with CKD compared with controls (8.79±3.24 vs. 5.17±1.11%, P<0.001; 7.20±2.79 vs. 3.27±0.79%, P<0.001). In these patients, renal KL methylation level correlated inversely with renal KL immunostaining intensity (ρ=-0.794, P<0.001). Estimated glomerular filtration rate correlated inversely with renal and PBMC levels of KL promoter methylation (r=-0.829, P<0.001; r=-0.645, P<0.001), while tubulointerstistial fibrosis score correlated positively (ρ=0.826, P<0.001; ρ=0.755, P<0.001). PBMC KL promoter methylation level correlated positively with renal KL promoter methylation level in patients with CKD (r=0.787, P<0.001). In ROC curve, the area under curve was 0.964 (P<0.001) and the optimal cut-off value was 5.83% with a sensitivity of 93.8% and specificity of 86.7% to predict renal KL promoter hypermethylation. The degree of KL promoter methylation is associated with clinical and histological severity of CKD. PBMC KL promoter methylation level may act as a potential biomarker of renal KL promoter hypermethylation.  相似文献   

6.

Aims

To investigate the association of ABCG1, GALNT2 and HMGCR genes promoter DNA methylation with coronary heart disease (CHD) and explore the interaction between their methylation status and the CHD patients'' clinical characteristics in Han Chinese population.

Methods and results

Methylation-specific polymerase chain reaction (MSP) technology was used to examine the role of the aberrant gene promoter methylation in CHD in Han Chinese population. A total of 85 CHD patients and 54 participants without CHD confirmed by angiography were recruited. 82.8% of the participants with ABCG1 gene promoter hypermethylation have CHD, while only 17.4% of the participants without hypermethylation have it. The average age of the participants with GALNT2 gene promoter hypermethylation is 62.10±8.21, while that of the participants without hypermethylation is 57.28±9.87; in the former group, 75.4% of the participants have CHD, compared to only 50% in the latter group. As for the HMGCR gene, the average age of the participants with promoter hypermethylation is 63.24±8.10 and that of the participants without hypermethylation is 57.79±9.55; its promoter hypermethylation is likely to be related to smoking. Our results indicated a significant statistical association of promoter methylation of the ABCG1 gene with increased risk of CHD (OR = 19.966; 95% CI, 7.319–54.468; P *<0.001; P *: adjusted for age, gender, smoking, lipid level, hypertension, and diabetes). Similar results were obtained for that of the GALNT2 gene (OR = 2.978; 95% CI, 1.335–6.646; P * = 0.008), but not of HMGCR gene (OR = 1.388; 95% CI, 0.572–3.371; P * = 0.469).

Conclusions

The present work provides evidence to support the association of promoter DNA methylation status with the risk profile of CHD. Our data indicates that promoter DNA hypermethylation of the ABCG1 and GALNT2 genes, but not the HMGCR gene, is associated with an increased risk of CHD. CHD, smoking and aging are likely to be the important factors influencing DNA hypermethylation.  相似文献   

7.

Background

Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major glucose metabolic tissues from these twins.

Methodology/Principal Findings

Skeletal muscle (n = 11 pairs) and subcutaneous adipose tissue (n = 5 pairs) biopsies were collected from 53–80 year-old monozygotic twin pairs discordant for type 2 diabetes. DNA methylation was measured by microarrays at 26,850 cytosine-guanine dinucleotide (CpG) sites in the promoters of 14,279 genes. Bisulfite sequencing was applied to validate array data and to quantify methylation of intergenic repetitive DNA sequences. The overall intra-pair variation in DNA methylation was large in repetitive (LINE1, D4Z4 and NBL2) regions compared to gene promoters (standard deviation of intra-pair differences: 10% points vs. 4% points, P<0.001). Increased variation of LINE1 sequence methylation was associated with more phenotypic dissimilarity measured as body mass index (r = 0.77, P = 0.007) and 2-hour plasma glucose (r = 0.66, P = 0.03) whereas the variation in promoter methylation did not associate with phenotypic differences. Validated methylation changes were identified in the promoters of known type 2 diabetes-related genes, including PPARGC1A in muscle (13.9±6.2% vs. 9.0±4.5%, P = 0.03) and HNF4A in adipose tissue (75.2±3.8% vs. 70.5±3.7%, P<0.001) which had increased methylation in type 2 diabetic individuals. A hypothesis-free genome-wide exploration of differential methylation without correction for multiple testing identified 789 and 1,458 CpG sites in skeletal muscle and adipose tissue, respectively. These methylation changes only reached some percentage points, and few sites passed correction for multiple testing.

Conclusions/Significance

Our study suggests that likely acquired DNA methylation changes in skeletal muscle or adipose tissue gene promoters are quantitatively small between type 2 diabetic and non-diabetic twins. The importance of methylation changes in candidate genes such as PPARGC1A and HNF4A should be examined further by replication in larger samples.  相似文献   

8.
9.
10.
Dilated cardiomyopathies (DCM) are a major cause of mortality in patients with systemic lupus erythematosus (SLE). Immune responses induced by human parvovirus B19 (B19) are considered an important pathogenic mechanism in myocarditis or DCM. However, little is known about Th17-related cytokines in SLE patients with DCM about the linkage with B19 infection. IgM and IgG against B19 viral protein, and serum levels of Th17-related cytokines were determined using ELISA in eight SLE patients with DCM and six patients with valvular heart disease (VHD). Humoral responses of anti-B19-VP1u and anti-B19-NS1 antibody were assessed using Western blot and B19 DNA was detected by nested Polymerase Chain Reaction (PCR). Levels of interleukin (IL)-17, IL-6, IL-1β, and tumor necrosis factor (TNF)-α were significantly higher in SLE patients with DCM (mean ± SEM, 390.99±125.48 pg/ml, 370.24±114.09 pg/ml, 36.01±16.90 pg/ml, and 183.84±82.94 pg/ml, respectively) compared to healthy controls (51.32±3.04 pg/ml, p<0.001; 36.88±6.64 pg/ml, p<0.001; 5.39±0.62 pg/ml, p<0.005; and 82.13±2.42 pg/ml, p<0.005, respectively). Levels of IL-17 and IL-6 were higher in SLE patients with DCM versus those with VHD (both p<0.01). Five (62.5%) of DCM patients had detectable anti-B19-NS1 IgG and four (50.0%) of them had anti-B19-VP1u IgG, whereas only one (16.7%) of VHD patients had detectable anti-B19-NS1 IgG and anti-B19-VP1u IgG. Serum levels of IL-17, IL-6 and IL-1β were markedly higher in SLE patients with anti-B19-VP1u IgG and anti-B19-NS1 IgG compared to those without anti-B19-VP1u IgG or anti-B19-NS1 IgG, respectively. These suggest a potential association of B19 with DCM and Th17-related cytokines implicated in the pathogenesis of DCM in SLE patients.  相似文献   

11.
The aim of this study was to investigate olanzapine (OZ) systemic absolute bioavailability after intranasal (i.n.) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of olanzapine following intranasal administration. Olanzapine-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions and studied in terms of their size, drug loading, and in vitro release. The OZ nanoparticles were administered i.n. to rabbits, and OZ plasma concentration at predetermined time points was compared to i.n. administration of OZ in solution. The concentrations of OZ in plasma were analyzed by ultra performance liquid chromatography mass spectroscopy (UPLC/MS). OZ-loaded chitosan nanoparticles significantly (p < 0.05) enhanced systemic absorption with 51 ± 11.2% absolute bioavailability as compared to 28 ± 6.7% after i.n. administration of OZ solution. The results of the present study suggest that intranasal administration of OZ-loaded chitosan nanoparticles formulation could be an attractive modality for delivery of OZ systemically.KEY WORDS: bioavailability, intranasal, nanoparticles, olanzapine, pharmacokinetic  相似文献   

12.
This clinical trial aimed to discover the effects of probiotic soy milk and soy milk on MLH1 and MSH2 promoter methylation, and oxidative stress among type II diabetic patients. Forty patients with type II diabetes mellitus aged 35–68 years were assigned to two groups in this randomized, double-blind, controlled clinical trial. Patients in the intervention group consumed 200 ml/day of probiotic soy milk containing Lactobacillus plantarum A7, while those in the control group consumed 200 ml/d of conventional soy milk for 8 weeks. Fasting blood samples, anthropometric measurements, and 24-h dietary recalls were collected at the baseline and at the end of the study, respectively. Probiotic soy milk significantly decreased promoter methylation in proximal and distal MLH1 promoter region (P < 0.01 and P < 0.0001, respectively) compared with the baseline values, while plasma concentration of 8-hydroxy-2′-deoxyguanosine (8-OHdG) decreased significantly compared with soy milk (P < 0.05). In addition, a significant increase in superoxide dismutase (SOD) activity was observed in probiotic soy milk group compared with baseline value (P < 0.01). There were no significant changes from baseline in the promoter methylation of MSH2 within either group (P > 0.05). The consumption of probiotic soy milk improved antioxidant status in type II diabetic patients and may decrease promoter methylation among these patients, indicating that probiotic soy milk is a promising agent for diabetes management.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-015-0503-1) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
15.
Changes in epigenetic programming of embryonic growth genes during pregnancy seem to affect fetal growth. Therefore, in a population-based prospective birth cohort in the Netherlands, we examined associations between fetal and infant growth and DNA methylation of IGF2DMR, H19 and MTHFR. For this study, we selected 69 case children born small-for-gestational age (SGA, birth weight <-2SDS) and 471 control children. Fetal growth was assessed with serial ultrasound measurements. Information on birth outcomes was retrieved from medical records. Infant weight was assessed at three and six months. Methylation was assessed in DNA extracted from umbilical cord white blood cells. Analyses were performed using linear mixed models with DNA methylation as dependent variable. The DNA methylation levels of IGF2DMR and H19 in the control group were, median (90% range), 53.6% (44.5–61.6) and 30.0% (25.6–34.2) and in the SGA group 52.0% (43.9–60.9) and 30.5% (23.9–32.9), respectively. The MTHFR region was found to be hypomethylated with limited variability in the control and SGA group, 2.5% (1.4–4.0) and 2.4% (1.5–3.8), respectively. SGA was associated with lower IGF2DMR DNA methylation (β = −1.07, 95% CI −1.93; −0.21, P-value = 0.015), but not with H19 methylation. A weight gain in the first three months after birth was associated with lower IGF2DMR DNA methylation (β = −0.53, 95% CI −0.91; −0.16, P-value = 0.005). Genetic variants in the IGF2/H19 locus were associated with IGF2DMR DNA methylation (P-value<0.05), but not with H19 methylation. Furthermore, our results suggest a possibility of mediation of DNA methylation in the association between the genetic variants and SGA. To conclude, IGF2DMR and H19 DNA methylation is associated with fetal and infant growth.  相似文献   

16.
DNA methylation reprogramming occurs during mammalian gametogenesis and embryogenesis. Sex-specific DNA methylation patterns at specific CpG islands controlling imprinted genes are acquired during this window of development. Characterization of the DNA methylation dynamics of imprinted genes acquired by oocytes during folliculogenesis is essential for understanding the physiological and genetic aspects of female gametogenesis and to determine the parameters for oocyte competence. This knowledge can be used to improve in vitro embryo production (IVP), specifically because oocyte competence is one of the most important aspects determining the success of IVP. Imprinted genes, such as IGF2, play important roles in embryo development, placentation and fetal growth. The aim of this study was to characterize the DNA methylation profile of the CpG island located in IGF2 exon 10 in oocytes during bovine folliculogenesis. The methylation percentages in oocytes from primordial follicles, final secondary follicles, small antral follicles, large antral follicles, MII oocytes and spermatozoa were 73.74 ± 2.88%, 58.70 ± 7.46%, 56.00 ± 5.58%, 65.77 ± 5.10%, 56.35 ± 7.45% and 96.04 ± 0.78%, respectively. Oocytes from primordial follicles showed fewer hypomethylated alleles (15.5%) than MII oocytes (34.6%) (p = 0.039); spermatozoa showed only hypermethylated alleles. Moreover, MII oocytes were less methylated than spermatozoa (p<0.001). Our results showed that the methylation pattern of this region behaves differently between mature oocytes and spermatozoa. However, while this region has a classical imprinted pattern in spermatozoa that is fully methylated, it was variable in mature oocytes, showing hypermethylated and hypomethylated alleles. Furthermore, our results suggest that this CpG island may have received precocious reprogramming, considering that the hypermethylated pattern was already found in growing oocytes from primordial follicles. These results may contribute to our understanding of the reprogramming of imprinted genes during bovine oogenesis.  相似文献   

17.
None of the polymorphic variants of the IL2RA gene found associated with Type 1 Diabetes (T1D) was shown to have a functional effect. To test if the epigenetic variation could play a role at this locus, we studied the methylation of 6 CpGs located within the proximal promoter of IL2RA gene in 252 T1D patients compared with 286 age-matched controls. We found that DNA methylation at CpGs −373 and −456 was slightly but significantly higher in patients than in controls (40.4±4.6 vs 38.3±5.4, p = 1.4E4; 91.4±2.8 vs 89.5±5.3, p = 1.8E-6), while other CpG showed a strictly comparable methylation. Among 106 single nucleotide polymorphisms (SNPs) located in the neighboring 180kb region, we found that 28 SNPs were associated with DNA methylation at CpG −373. Sixteen of these SNPs were known to be associated with T1D. Our findings suggest that the effect of IL2RA risk alleles on T1D may be partially mediated through epigenetic changes.  相似文献   

18.
IGF2 is a paternally expressed imprinted gene with an important role in development and brain function. Allele-specific expression of IGF2 is regulated by DNA methylation at three differentially methylated regions (DMRs) spanning the IGF2/H19 domain on human 11p15.5. We have comprehensively assessed DNA methylation and genotype across the three DMRs and the H19 promoter using tissue from a unique collection of well-characterized and neuropathologically-dissected post-mortem human cerebellum samples (n = 106) and frontal cortex samples (n = 51). We show that DNA methylation, particularly in the vicinity of a key CTCF-binding site (CTCF3) in the imprinting control region (ICR) upstream of H19, is strongly correlated with cerebellum weight. DNA methylation at CTCF3 uniquely explains ∼25% of the variance in cerebellum weight. In addition, we report that genetic variation in this ICR is strongly associated with cerebellum weight in a parental-origin specific manner, with maternally-inherited alleles associated with a 16% increase in cerebellum weight compared with paternally-inherited alleles. Given the link between structural brain abnormalities and neuropsychiatric disease, an understanding of the epigenetic and parent-of-origin specific genetic factors associated with brain morphology provides important clues about the etiology of disorders such as schizophrenia and autism.Key words: epigenetic, DNA methylation, genomic imprinting, cerebellum, IGF2, H19, brain, expression, frontal cortex, genetic, single nucleotide polymorphism  相似文献   

19.
We have purified GST-fused recombinant mouse Dnmt3a and three isoforms of mouse Dnmt3b to near homogeneity. Dnmt3b3, an isoform of Dnmt3b, did not have DNA methylation activity. Dnmt3a, Dnmt3b1 or Dnmt3b2 showed similar activity toward poly(dG-dC)-poly(dG-dC) for measuring de novo methylation activity, and toward poly(dI-dC)-poly(dI-dC) for measuring total activity. This indicates that the enzymes are de novo-type DNA methyltransferases. The enzyme activity was inhibited by NaCl or KCl at concentrations >100 mM. The kinetic parameter, KmAdoMet, for Dnmt3a, Dnmt3b1 and Dnmt3b2 was 0.4, 1.2 and 0.9 µM when poly(dI-dC)-poly(dI-dC) was used, and 0.3, 1.2 and 0.8 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. The KmDNA values for Dnmt3a, Dnmt3b1 and Dnmt3b2 were 2.7, 1.3 and 1.5 µM when poly(dI-dC)-poly(dI-dC) was used, and 3.5, 1.0 and 0.9 µM when poly(dG-dC)-poly(dG-dC) was used, respectively. For the methylation specificity, Dnmt3a significantly methylated CpG >> CpA. On the other hand, Dnmt3b1 methylated CpG > CpT ≥ CpA. Immuno-purified Dnmt3a, Myc-tagged and overexpressed in HEK 293T cells, methylated CpG >> CpA > CpT. Neither Dnmt3a nor Dnmt3b1 methylated the first cytosine of CpC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号