首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.  相似文献   

2.
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates heterotrimeric G protein and H-Ras signaling pathways. RGS14 possesses an RGS domain that binds active Gαi/o-GTP subunits to promote GTP hydrolysis and a G protein regulatory (GPR) motif that selectively binds inactive Gαi1/3-GDP subunits to form a stable heterodimer at cellular membranes. RGS14 also contains two tandem Ras/Rap binding domains (RBDs) that bind H-Ras. Here we show that RGS14 preferentially binds activated H-Ras-GTP in live cells to enhance H-Ras cellular actions and that this interaction is regulated by inactive Gαi1-GDP and G protein-coupled receptors (GPCRs). Using bioluminescence resonance energy transfer (BRET) in live cells, we show that RGS14-Luciferase and active H-Ras(G/V)-Venus exhibit a robust BRET signal at the plasma membrane that is markedly enhanced in the presence of inactive Gαi1-GDP but not active Gαi1-GTP. Active H-Ras(G/V) interacts with a native RGS14·Gαi1 complex in brain lysates, and co-expression of RGS14 and Gαi1 in PC12 cells greatly enhances H-Ras(G/V) stimulatory effects on neurite outgrowth. Stimulation of the Gαi-linked α2A-adrenergic receptor induces a conformational change in the Gαi1·RGS14·H-Ras(G/V) complex that may allow subsequent regulation of the complex by other binding partners. Together, these findings indicate that inactive Gαi1-GDP enhances the affinity of RGS14 for H-Ras-GTP in live cells, resulting in a ternary signaling complex that is further regulated by GPCRs.  相似文献   

3.
Protease-activated receptor 1 (PAR1) is a G-protein coupled receptor (GPCR) that is activated by natural proteases to regulate many physiological actions. We previously reported that PAR1 couples to Gi, Gq and G12 to activate linked signaling pathways. Regulators of G protein signaling (RGS) proteins serve as GTPase activating proteins to inhibit GPCR/G protein signaling. Some RGS proteins interact directly with certain GPCRs to modulate their signals, though cellular mechanisms dictating selective RGS/GPCR coupling are poorly understood. Here, using bioluminescence resonance energy transfer (BRET), we tested whether RGS2 and RGS4 bind to PAR1 in live COS-7 cells to regulate PAR1/Gα-mediated signaling. We report that PAR1 selectively interacts with either RGS2 or RGS4 in a G protein-dependent manner. Very little BRET activity is observed between PAR1-Venus (PAR1-Ven) and either RGS2-Luciferase (RGS2-Luc) or RGS4-Luc in the absence of Gα. However, in the presence of specific Gα subunits, BRET activity was markedly enhanced between PAR1-RGS2 by Gαq/11, and PAR1-RGS4 by Gαo, but not by other Gα subunits. Gαq/11-YFP/RGS2-Luc BRET activity is promoted by PAR1 and is markedly enhanced by agonist (TFLLR) stimulation. However, PAR1-Ven/RGS-Luc BRET activity was blocked by a PAR1 mutant (R205A) that eliminates PAR1-Gq/11 coupling. The purified intracellular third loop of PAR1 binds directly to purified His-RGS2 or His-RGS4. In cells, RGS2 and RGS4 inhibited PAR1/Gα-mediated calcium and MAPK/ERK signaling, respectively, but not RhoA signaling. Our findings indicate that RGS2 and RGS4 interact directly with PAR1 in Gα-dependent manner to modulate PAR1/Gα-mediated signaling, and highlight a cellular mechanism for selective GPCR/G protein/RGS coupling.  相似文献   

4.
G beta 5 (Gbeta5, Gβ5) is a unique G protein β subunit that is thought to be expressed as an obligate heterodimer with R7 regulator of G protein signaling (RGS) proteins instead of with G gamma (Gγ) subunits. We found that D2-dopamine receptor (D2R) coexpression enhances the expression of Gβ5, but not that of the G beta 1 (Gβ1) subunit, in HEK293 cells, and that the enhancement of expression occurs through a stabilization of Gβ5 protein. We had previously demonstrated that the vast majority of D2R either expressed endogenously in the brain or exogenously in cell lines segregates into detergent-resistant biochemical fractions. We report that when expressed alone in HEK293 cells, Gβ5 is highly soluble, but is retargeted to the detergent-resistant fraction after D2R coexpression. Furthermore, an in-cell biotin transfer proximity assay indicated that D2R and Gβ5 segregating into the detergent-resistant fraction specifically interacted in intact living cell membranes. Dopamine-induced D2R internalization was blocked by coexpression of Gβ5, but not Gβ1. However, the same Gβ5 coexpression levels had no effect on agonist-induced internalization of the mu opioid receptor (MOR), cell surface D2R levels, dopamine-mediated recruitment of β-arrestin to D2R, the amplitude of D2R-G protein coupling, or the deactivation kinetics of D2R-activated G protein signals. The latter data suggest that the interactions between D2R and Gβ5 are not mediated by endogenously expressed R7 RGS proteins.  相似文献   

5.
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.  相似文献   

6.
Regulator of G protein signaling (RGS) proteins interact with activated Gα subunits via their RGS domains and accelerate the hydrolysis of GTP. Although the R4 subfamily of RGS proteins generally accepts both Gαi/o and Gαq/11 subunits as substrates, the R7 and R12 subfamilies select against Gαq/11. In contrast, only one RGS protein, RGS2, is known to be selective for Gαq/11. The molecular basis for this selectivity is not clear. Previously, the crystal structure of RGS2 in complex with Gαq revealed a non-canonical interaction that could be due to interfacial differences imposed by RGS2, the Gα subunit, or both. To resolve this ambiguity, the 2.6 Å crystal structure of RGS8, an R4 subfamily member, was determined in complex with Gαq. RGS8 adopts the same pose on Gαq as it does when bound to Gαi3, indicating that the non-canonical interaction of RGS2 with Gαq is due to unique features of RGS2. Based on the RGS8-Gαq structure, residues in RGS8 that contact a unique α-helical domain loop of Gαq were converted to those typically found in R12 subfamily members, and the reverse substitutions were introduced into RGS10, an R12 subfamily member. Although these substitutions perturbed their ability to stimulate GTP hydrolysis, they did not reverse selectivity. Instead, selectivity for Gαq seems more likely determined by whether strong contacts can be maintained between α6 of the RGS domain and Switch III of Gαq, regions of high sequence and conformational diversity in both protein families.  相似文献   

7.
8.
Reversible attachment and removal of palmitate or other long-chain fatty acids on proteins has been hypothesized, like phosphorylation, to control diverse biological processes. Indeed, palmitate turnover regulates Ras trafficking and signaling. Beyond this example, however, the functions of palmitate turnover on specific proteins remain poorly understood. Here, we show that a mechanism regulating G protein-coupled receptor signaling in neuronal cells requires palmitate turnover. We used hexadecyl fluorophosphonate or palmostatin B to inhibit enzymes in the serine hydrolase family that depalmitoylate proteins, and we studied R7 regulator of G protein signaling (RGS)-binding protein (R7BP), a palmitoylated allosteric modulator of R7 RGS proteins that accelerate deactivation of Gi/o class G proteins. Depalmitoylation inhibition caused R7BP to redistribute from the plasma membrane to endomembrane compartments, dissociated R7BP-bound R7 RGS complexes from Gi/o-gated G protein-regulated inwardly rectifying K+ (GIRK) channels and delayed GIRK channel closure. In contrast, targeting R7BP to the plasma membrane with a polybasic domain and an irreversibly attached lipid instead of palmitate rendered GIRK channel closure insensitive to depalmitoylation inhibitors. Palmitate turnover therefore is required for localizing R7BP to the plasma membrane and facilitating Gi/o deactivation by R7 RGS proteins on GIRK channels. Our findings broaden the scope of biological processes regulated by palmitate turnover on specific target proteins. Inhibiting R7BP depalmitoylation may provide a means of enhancing GIRK activity in neurological disorders.  相似文献   

9.
Although most heterotrimeric G proteins are thought to dissociate into Gα and Gβγ subunits upon activation, the evidence in the Gi/o family has long been inconsistent and contradictory. The Gi/o protein family mediates inhibition of cAMP production and regulates the activity of ion channels. On the basis of experimental evidence, both heterotrimer dissociation and rearrangement have been postulated as crucial steps of Gi/o protein activation and signal transduction. We have now investigated the process of Gi/o activation in living cells directly by two-photon polarization microscopy and indirectly by observations of G protein-coupled receptor kinase-derived polypeptides. Our observations of existing fluorescently labeled and non-modified Gαi/o constructs indicate that the molecular mechanism of Gαi/o activation is affected by the presence and localization of the fluorescent label. All investigated non-labeled, non-modified Gi/o complexes dissociate extensively upon activation. The dissociated subunits can activate downstream effectors and are thus likely to be the major activated Gi/o form. Constructs of Gαi/o subunits fluorescently labeled at the N terminus (GAP43-CFP-Gαi/o) seem to faithfully reproduce the behavior of the non-modified Gαi/o subunits. Gαi constructs labeled within the helical domain (Gαi-L91-YFP) largely do not dissociate upon activation, yet still activate downstream effectors, suggesting that the dissociation seen in non-modified Gαi/o proteins is not required for downstream signaling. Our results appear to reconcile disparate published data and settle a long running dispute.  相似文献   

10.
The R7 family of regulators of G protein signaling (RGS) proteins, comprising RGS6, RGS7, RGS9, and RGS11, regulate neuronal G protein signaling pathways. All members of the R7 RGS form trimeric complexes with the atypical G protein β subunit, Gβ5, and membrane anchor R7BP or R9AP. Association with Gβ5 and membrane anchors has been shown to be critical for maintaining proteolytic stability of the R7 RGS proteins. However, despite its functional importance, the mechanism of how R7 RGS forms complexes with Gβ5 and membrane anchors remains poorly understood. Here, we used protein-protein interaction, co-localization, and protein stability assays to show that association of RGS9 with membrane anchors requires Gβ5. We further establish that the recruitment of R7BP to the complex requires an intact interface between the N-terminal lobe of RGS9 and protein interaction surface of Gβ5. Site-directed mutational analysis reveals that distinct molecular determinants in the interface between Gβ5 and N-terminal Dishevelled, EGL-10, Pleckstrin/DEP Helical Extension (DEP/DHEY) domains are differentially involved in R7BP binding and proteolytic stabilization. On the basis of these findings, we conclude that Gβ5 contributes to the formation of the binding site to the membrane anchors and thus is playing a central role in the assembly of the proteolytically stable trimeric complex and its correct localization in the cell.  相似文献   

11.
The R7 subfamily of RGS proteins critically regulates neuronal G protein-signaling pathways that are essential for vision, nociception, motor coordination, and reward processing. A member of the R7 RGS family, RGS11, is a GTPase-accelerating protein specifically expressed in retinal ON-bipolar cells where it forms complexes with the atypical G protein β subunit, Gβ5, and transmembrane protein R9AP. Association with R9AP has been shown to be critical for the proteolytic stability of the complex in the retina. In this study we report that R9AP can in addition stimulate the GTPase-accelerating protein activity of the RGS11·Gβ5 complex at Gαo. Single turnover GTPase assays reveal that R9AP co-localizes RGS11·Gβ5 and Gαo on the membrane and allosterically potentiates the GTPase-accelerating function of RGS11·Gβ5. Reconstitution of mGluR6-Gαo signaling in Xenopus oocytes indicates that RGS11·Gβ5-mediated GTPase acceleration in this system requires co-expression of R9AP. The results provide new insight into the regulation of mGluR6-Gαo signaling by the RGS11·Gβ5·R9AP complex and establish R9AP as a general GTPase-accelerating protein activity regulator of R7 RGS complexes.  相似文献   

12.
G protein β subunits (Gβ) play essential roles in phototransduction as part of G protein βγ (Gβγ) and regulator of G protein signaling 9 (RGS9)-Gβ5 heterodimers. Both are obligate dimers that rely on the cytosolic chaperone CCT and its co-chaperone PhLP1 to form complexes from their nascent polypeptides. The importance of PhLP1 in the assembly process was recently demonstrated in vivo in a retinal rod-specific deletion of the Phlp1 gene. To test whether this is a general mechanism that also applies to other cell types, we disrupted the Phlp1 gene specifically in mouse cones and measured the effects on G protein expression and cone visual signal transduction. In PhLP1-deficient cones, expression of cone transducin (Gt2) and RGS9-Gβ5 subunits was dramatically reduced, resulting in a 27-fold decrease in sensitivity and a 38-fold delay in cone photoresponse recovery. These results demonstrate the essential role of PhLP1 in cone G protein complex formation. Our findings reveal a common mechanism of Gβγ and RGS9-Gβ5 assembly in rods and cones, highlighting the importance of PhLP1 and CCT-mediated Gβ complex formation in G protein signaling.  相似文献   

13.
Activating mutations in Gαq/11 are a major driver of uveal melanoma (UM), the most common intraocular cancer in adults. While progress has recently been made in targeting Gαq/11 for UM therapy, the crucial role for these proteins in normal physiology and their high structural similarity with many other important GTPase proteins renders this approach challenging. The aim of the current study was to validate whether a key regulator of Gq signaling, regulator of G protein signaling 2 (RGS2), can inhibit Gαq-mediated UM cell growth. We used two UM cell lines, 92.1 and Mel-202, which both contain the most common activating mutation GαqQ209L and developed stable cell lines with doxycycline-inducible RGS2 protein expression. Using cell viability assays, we showed that RGS2 could inhibit cell growth in both of these UM cell lines. We also found that this effect was independent of the canonical GTPase-activating protein activity of RGS2 but was dependent on the association between RGS2 and Gαq. Furthermore, RGS2 induction resulted in only partial reduction in cell growth as compared to siRNA-mediated Gαq knockdown, perhaps because RGS2 was only able to reduce mitogen-activated protein kinase signaling downstream of phospholipase Cβ, while leaving activation of the Hippo signaling mediators yes-associated protein 1/TAZ, the other major pathway downstream of Gαq, unaffected. Taken together, our data indicate that RGS2 can inhibit UM cancer cell growth by associating with GαqQ209L as a partial effector antagonist.  相似文献   

14.
The free-living amoeba Naegleria fowleri is a causative agent of primary amoebic meningoencephalitis and is highly resistant to current therapies, resulting in mortality rates >97%. As many therapeutics target G protein–centered signal transduction pathways, further understanding the functional significance of G protein signaling within N. fowleri should aid future drug discovery against this pathogen. Here, we report that the N. fowleri genome encodes numerous transcribed G protein signaling components, including G protein–coupled receptors, heterotrimeric G protein subunits, regulator of G protein signaling (RGS) proteins, and candidate Gα effector proteins. We found N. fowleri Gα subunits have diverse nucleotide cycling kinetics; Nf Gα5 and Gα7 exhibit more rapid nucleotide exchange than GTP hydrolysis (i.e., “self-activating” behavior). A crystal structure of Nf Gα7 highlights the stability of its nucleotide-free state, consistent with its rapid nucleotide exchange. Variations in the phosphate binding loop also contribute to nucleotide cycling differences among Gα subunits. Similar to plant G protein signaling pathways, N. fowleri Gα subunits selectively engage members of a large seven-transmembrane RGS protein family, resulting in acceleration of GTP hydrolysis. We show Nf Gα2 and Gα3 directly interact with a candidate Gα effector protein, RGS-RhoGEF, similar to mammalian Gα12/13 signaling pathways. We demonstrate Nf Gα2 and Gα3 each engage RGS-RhoGEF through a canonical Gα/RGS domain interface, suggesting a shared evolutionary origin with G protein signaling in the enteric pathogen Entamoeba histolytica. These findings further illuminate the evolution of G protein signaling and identify potential targets of pharmacological manipulation in N. fowleri.  相似文献   

15.
Regulator of G-protein signaling (RGS) proteins are a family of highly diverse, multifunctional proteins that function primarily as GTPase accelerating proteins (GAPs). RGS proteins increase the rate of GTP hydrolysis by Gα proteins and essentially regulate the duration of active signaling. Recently, we have identified two chimeric RGS proteins from soybean and reported their distinct GAP activities on individual Gα proteins. A single amino acid substitution (Alanine 357 to Valine) of RGS2 is responsible for differential GAP activity. Surprisingly, most monocot plant genomes do not encode for a RGS protein homolog. Here we discuss the soybean RGS proteins in the context of their evolution in plants, their relatedness to non-plant RGS protein homologs and the effect they might have on the heterotrimeric G-protein signaling mechanisms. We also provide experimental evidence to show that the interaction interface between plant RGS and Gα proteins is different from what is predicted based on mammalian models.  相似文献   

16.
Heterotrimeric G proteins (Gα, Gβ/Gγ subunits) constitute one of the most important components of cell signaling cascade. G Protein Coupled Receptors (GPCRs) perceive many extracellular signals and transduce them to heterotrimeric G proteins, which further transduce these signals intracellular to appropriate downstream effectors and thereby play an important role in various signaling pathways. GPCRs exist as a superfamily of integral membrane protein receptors that contain seven transmembrane α-helical regions, which bind to a wide range of ligands. Upon activation by a ligand, the GPCR undergoes a conformational change and then activate the G proteins by promoting the exchange of GDP/GTP associated with the Gα subunit. This leads to the dissociation of Gβ/Gγ dimer from Gα. Both these moieties then become free to act upon their downstream effectors and thereby initiate unique intracellular signaling responses. After the signal propagation, the GTP of Gα-GTP is hydrolyzed to GDP and Gα becomes inactive (Gα-GDP), which leads to its re-association with the Gβ/Gγ dimer to form the inactive heterotrimeric complex. The GPCR can also transduce the signal through G protein independent pathway. GPCRs also regulate cell cycle progression. Till to date thousands of GPCRs are known from animal kingdom with little homology among them, but only single GPCR has been identified in plant system. The Arabidopsis GPCR was reported to be cell cycle regulated and also involved in ABA and in stress signaling. Here I have described a general mechanism of signal transduction through GPCR/G proteins, structure of GPCRs, family of GPCRs and plant GPCR and its role.Key words: heterotrimeric G proteins, GPCRs, seven-transmembrane receptors, signal transduction, stress signaling  相似文献   

17.
RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4. Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4 and an AlF4-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.  相似文献   

18.
19.
Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Gα GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family.  相似文献   

20.
Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein–coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号