首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Plant hormone abscisic acid (ABA) is found in a wide range of land plants, from mosses to angiosperms. However, our knowledge concerning the function of ABA is limited to some angiosperm plant species. We have shown that the basal land plant Physcomitrella patens and the model plant Arabidopsis thaliana share a conserved abscisic acid (ABA) signaling pathway mediated through ABI1-related type 2C protein phosphatases (PP2Cs). Ectopic expression of Arabidopsis abi1-1, a dominant allele of ABI1 that functions as a negative regulator of ABA signaling, or targeted disruption of Physcomitrella ABI1-related gene (PpABI1A) resulted in altered ABA sensitivity and abiotic stress tolerance of Physcomitrella, as demonstrated by osmostress and freezing stress. Moreover, transgenic Physcomitrella overexpressing abi1-1 showed altered morphogenesis. These trangenic plants had longer stem lengths compared to the wild type, and continuous growth of archegonia (female organ) with few sporophytes under non-stress conditions. Our results suggest that PP2C-mediated ABA signaling is involved in both the abiotic stress responses and developmental regulation of Physcomitrella.Key words: ABA, ABI1, Physcomitrella patens, PP2C, signaling  相似文献   

11.
The mechanisms plants use to adapt to abiotic stress have been widely studied in a number of seed plants. Major research has been focused on the isolation of stress-responsive genes as a means to understand the molecular events underlying the adaptation process. To study stress-related gene regulation in the moss Physcomitrella patens we have isolated two cDNAs showing homology to highly conserved small hydrophobic proteins from different seed plants. The corresponding genes are up-regulated by dehydration, salt, sorbitol, cold and the hormone abscisic acid, indicating overlapping pathways are involved in the control of these genes. Based on the molecular characterization of the moss homologs we propose that signaling pathways in response to abiotic stress may have been altered during the evolution of land plants.Abbreviation ABA Abscisic acid - EST Expressed sequence tag  相似文献   

12.
13.
A multi-well fluid loading (MFL) system was developed to deliver oscillatory subphysiologic to supraphysiologic fluid shear stresses to cell monolayers in vitro using standard multi-well culture plates. Computational fluid dynamics modeling with fluid-structure interactions was used to quantify the squeeze film fluid flow between an axially displaced piston and the well plate surface. Adjusting the cone angle of the piston base modulated the fluid pressure, velocity, and shear stress magnitudes. Modeling results showed that there was near uniform fluid shear stress across the well with a linear drop in pressure across the radius of the well. Using the MFL system, RAW 264.7 osteoclastic cells were exposed to oscillatory fluid shear stresses of 0, 0.5, 1.5, 4, 6, and 17 Pa. Cells were loaded 1 h per day at 1 Hz for two days. Compared to sub-physiologic and physiologic levels, supraphysiologic oscillatory fluid shear induced upregulation of osteoclastic activity as measured by tartrate-resistant acid phosphatase activity and formation of mineral resorption pits. Cell number remained constant across all treatment groups.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号