首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2014,16(7):915-926
BackgroundThere is a growing interest in mesenchymal stem cells (MSCs) because they are regarded as good candidates for cell therapy. Adipose tissue represents an easily accessible source to derive mesenchymal stem cells (Ad-MSCs) non-invasively in large numbers. The aim of this study was to evaluate a defined serum-free medium for in vitro expansion of MSCs as a prerequisite for their clinical use.MethodsAdipose tissue was isolated from healthy donors. Cells were isolated and expanded for five passages in serum-free medium (Mesencult-XF) and Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum (DMEM-FBS). MSC morphology, marker expression, viability, population doubling time and differentiation potential toward osteogenic and adipogenic lineages were evaluated. Bone marrow MSCs were included as controls.ResultsAd-MSCs cultured in Mesencult-XF had shorter population doubling time (33.3 ± 13.7 h) compared with those cultured in DMEM-FBS (54.3 ± 41.0 h, P < 0.05). Ad-MSCs cultured in Mesencult-XF displayed a stable morphology and surface marker expression and a higher differentiation potential in comparison to Ad-MSCs cultured in DMEM-FBS.ConclusionsThe defined serum-free and xeno-free Mesencult-XF media appear to be a good choice for Ad-MSCs, but it is not as good in supporting culture of bone marrow MSCs when the cells are to be used for clinical purposes.  相似文献   

2.
李佳丹  陈婷  田洪榛  陈江  陈光辉 《生物磁学》2014,(14):2615-2621
目的:探讨胰岛素样生长因子-1(insulin-like growth factor-1,IGF-1)对脂肪间充质干细胞(adipose-derived stem cells,ADSCs)增殖的影响。方法:采用密度梯度离心法结合贴壁法分离脂肪间充质干细胞,接种于含体积分数为10%的胎牛血清的DMEM培养基中行贴壁培养。流式细胞仪检测ADSCs表面标志物(CD90、CD29、CD31、CD34、CD45)的表达情况,利用成骨、成脂诱导液诱导ADSCs向成骨细胞、成脂细胞分化,用碱性磷酸酶、油红O染色观察。采用终浓度为0、5、10、15、20、30 ng/mL IGF的培养基培养ADSCs,利用Edu染色标记ADSCs,分析不同浓度的IGF-1对ADSCs增殖的影响。结果:流式细胞术显示ADSCs的表型分子CD90、CD29呈阳性,CD31、CD45呈阴性,成骨诱导后碱性磷酸酶染色阳性,成脂诱导后油红O染色可见大量脂滴,表明培养的ADSCs具有成骨、成脂分化的能力。IGF-1促进ADSCs增殖的作用随IGF-1的作用浓度的增加而增加,并逐渐趋于饱和,在趋于15μg/mL的浓度时达到最大促增殖作用,且随着IGF-1作用时间的延长其促ADSCs增殖的作用逐渐增强。结论:本实验成功分离培养ADSCs,IGF-1对体外培养的ADSCs有促进增殖的作用。  相似文献   

3.
4.
Adipose-derived stem cells (ASCs) are a set of multi potent stem cells potentially used in cartilage tissue engineering. We hypothesized that the effect of dynamic compression and co-culture with nucleus pulposus cells (NPCs) promotes ASC proliferation and chondrogenic differentiation. A controlled dynamic compression loading device was utilized to stimulate ASCs obtained from Sprague Dawley (SD) rats and identified by flow cytometry. The proliferation index was measured by carboxyfluorescein succinimidyl ester (CFSE) staining. Dynamic compression, as well as co-culture enhanced chondrogenic differentiation of ASCs as indicated by the expression of SOX-9, type-II collagen and aggrecan, which were measured by real-time PCR and Western blot. In our study, we found dynamic compression promoted the proliferation of ASCs and induced its differentiation into NP-like cells. Combination of dynamic compression and co-culture showed an additive effect on NP-like cell differentiation.  相似文献   

5.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.  相似文献   

6.
7.
BACKGROUNDAdipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells.AIMTo test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19).METHODSASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco''s Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP).RESULTSDepending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSIONThe presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.  相似文献   

8.
Stromal cells from fat tissues exhibit properties of mesenchymal stem cells from other sources with the ability to differentiate towards multiple cell types. However, effective differentiation of these mesenchymal cells, called adipose-derived stem cells (ADSCs), towards cardiomyogenic lineage has been limited to a small number of isolated clones in an extended culture. Previously, we reported that treatment with phorbol ester induces the expression of several cardiomyogenic genes in the absence of serum. This study was performed to identify the roles of PKC isoforms in cardiomyogenic gene expression of ADSCs. Treatment with 10 nM phorbol myristate acetate (PMA) for 24 h caused sustained increases in mRNA levels for various cardiomyogenic genes, such as Mef2C, cardiac actin and troponin, for at least 6 days following the drug removal. The use of various inhibitors specific for PKC isoforms demonstrated that the novel PKC-theta/delta isoforms mediate the PMA effects. RT-PCR revealed that ADSCs express significant mRNA for PKC-delta, but not theta isoform. Overexpression of cDNA for PKC-delta resulted in marked increases in cardiac mRNA expression. These results indicate that activation of PKC-delta induces the expression of multiple cardiomyogenic genes in ADSCs.  相似文献   

9.
Developing bone is subject to the control of a broad variety of influences in vivo. For bone repair applications, in vitro osteogenic assays are routinely used to test the responses of bone-forming cells to drugs, hormones, and biomaterials. Results of these assays are used to predict the behavior of bone-forming cells in vivo. Stem cell research has shown promise for enhancing bone repair. In vitro osteogenic assays to test the bone-forming response of stem cells typically use chemical solutions. Stem cell in vitro osteogenic assays often neglect important biophysical cues, such as the forces associated with regular weight-bearing exercise, which promote bone formation. Incorporating more biophysical cues that promote bone formation would improve in vitro osteogenic assays for stem cells. Improved in vitro osteogenic stimulation opens opportunities for “pre-conditioning” cells to differentiate towards the desired lineage. In this review, we explore the role of select biophysical factors—growth surfaces, tensile strain, fluid flow and electromagnetic stimulation—in promoting osteogenic differentiation of stem cells from human adipose. Emphasis is placed on the potential for physical microenvironment manipulation to translate tissue engineering and stem cell research into widespread clinical usage.  相似文献   

10.
Adipose-derived mesenchymal stem cells(ADSCs) are a treatment cell source for patients with chronic liver injury. ADSCs are characterized by being harvested from the patient's own subcutaneous adipose tissue, a high cell yield(i.e., reduced immune rejection response), accumulation at a disease nidus, suppression of excessive immune response, production of various growth factors and cytokines, angiogenic effects, antiapoptotic effects, and control of immune cells via cellcell interaction. We previously showed that conditioned medium of ADSCs promoted hepatocyte proliferation and improved the liver function in a mouse model of acute liver failure. Furthermore, as found by many other groups, the administration of ADSCs improved liver tissue fibrosis in a mouse model of liver cirrhosis. A comprehensive protein expression analysis by liquid chromatography with tandem mass spectrometry showed that the various cytokines and chemokines produced by ADSCs promote the healing of liver disease. In this review, we examine the ability of expressed protein components of ADSCs to promote healing in cell therapy for liver disease. Previous studies demonstrated that ADSCs are a treatment cell source for patients with chronic liver injury. This review describes the various cytokines and chemokines produced by ADSCs that promote the healing of liver disease.  相似文献   

11.
Adipose-derived stem cells (ASCs) are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue. Isolated ASCs are typically expanded in monolayer on standard tissue culture plastic with a basal medium containing 10% fetal bovine serum. However, recent data suggest that altering the monolayer expansion conditions by using suspension culture plastic, adding growth factors to the medium, or adjusting the seeding density may affect the self-renewal rate, multipotency, and lineage-specific differentiation potential of the ASCs. We hypothesized that variation in any of these expansion conditions would influence the chondrogenic potential of ASCs. ASCs were isolated from human liposuction waste tissue and expanded through two passages with different tissue culture plastic, feed medium, and cell seeding densities. Once expanded, the cells were cast in an agarose gel and subjected to identical chondrogenic culture conditions for 7 days, at which point cell viability, radiolabel incorporation, and gene expression were measured. High rates of matrix synthesis upon chondrogenic induction were mostly associated with smaller cells, as indicated by cell width and area on tissue culture plastic, and it appears that expansion in a growth factor supplemented medium is important in maintaining this morphology. All end-point measures were highly dependent on the specific monolayer culture conditions. These results support the hypothesis that monolayer culture conditions may "prime" the cells or predispose them towards a specific phenotype and thus underscore the importance of early culture conditions in determining the growth and differentiation potential of ASCs.  相似文献   

12.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

13.
14.
Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. However, current management of these injuries is ineffective. Recently, mesenchymal stem cells (MSCs) have been extensively used in regenerative medicine and have achieved a high level of efficacy. In the present study, we hypothesised that human adipose-derived mesenchymal stem cells (hAd-MSCs) could be used as potential tools to heal RIII. We observed that adult Sprague–Dawley rats that received whole-abdominal irradiation benefitted from hAd-MSC injection. hAd-MSCs had RIII-healing effects, including anti-inflammation, neovascularisation and maintenance of epithelium homeostasis, as indicated by elevated serum IL-10, upregulation of vascular endothelial growth factor, basic fibroblast growth factor and epidermal growth factor in irradiated intestine, mobilisation of CD31-positive haematopoietic stem cells or haematopoietic progenitor cells, and the prolonged presence of Bmi1-positive cells within crypts. Consequently, after hAd-MSC treatment, irradiated rats survived longer than non-treated animals. These results suggest that hAd-MSCs have therapeutic potential for RIII management.  相似文献   

15.
16.
17.
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into a wide range of cell types and provide a potential to transfer therapeutic protein in vivo, making them valuable candidates for gene therapy and cell therapy. However, using MSCs in in vivo is limited due to the low rate of transfection and transduction efficacy. Therefore, developing methods to efficiently transfer genes into MSCs would provide a number of opportunities for using them in the clinic. Here, we introduce a simple and robust method for efficient transduction of human adipose-derived MSCs by modification under the culture condition of human embryonic kidney cells 293 (HEK293T) and MSCs. Moreover, as a transduction enhancer, polybrene was replaced with Lipofectamine, a cationic lipid. Therefore, we showed that transduction of primary cells can be increased efficiently by modifying the culture condition.  相似文献   

18.
Human adipose-derived mesenchymal stem cells (hADMSCs) are a potential cell source for autologous cell therapy due to their regenerative ability. However, detailed cytological or phenotypic characteristics of these cells are still unclear. Therefore, we determined and compared cell size, morphology, ultrastructure, and immunohistochemical (IHC) expression profiles of isolated hADMSCs and cells located in human adipose tissues. We also characterized the localization of these cells in vivo. Light microscopy examination at low power revealed that hADMSCs acquired a spindle-shaped morphology after four passages. Additionally, high power views showed that these cells had various sizes, nuclear contours, and cytoplasmic textures. To further evaluate cell morphology, transmission electron microscopy was performed. hADMSCs typically had ultrastructural characteristics similar to those of primitive mesenchymal cells including a relatively high nuclear/cytosol ratio, prominent nucleoli, immature cytoplasmic organelles, and numerous filipodia. Some cells contained various numbers of lamellar bodies and lipid droplets. IHC staining demonstrated that PDGFR and CD10 were constitutively expressed in most hADMSCs regardless of passage number but expression levels of α-SMA, CD68, Oct4 and c-kit varied. IHC staining of adipose tissue showed that cells with immunophenotypic characteristics identical to those of hADMSCs were located mainly in the perivascular adventitia not in smooth muscle area. In summary, hADMSCs were found to represent a heterogeneous cell population with primitive mesenchymal cells that were mainly found in the perivascular adventitia. Furthermore, the cell surface markers would be CD10/PDGFR. To obtain defined cell populations for therapeutic purposes, further studies will be required to establish more specific isolation methods.  相似文献   

19.
This study aimed to investigate the potentials of ex vivo expansion and pluridifferentiation of cryopreserved adult human bone marrow mesenchymal stem cells (hMSCs) into adipocytes and neurocytes. Cryopreserved hMSCs were resuscitated and cultured for 15 passages, and then induced to adipocytes and neurocytes with corresponding induction medium. The induced cells were observed for morphological properties and expression of triglyceride or neuron-specific enolase and nestin was detected. The result showed that the resuscitated cells cultured in induction medium consisting of dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin and insulin-like growth factor I (IGF-I) showed adipogenesis, and lipid vacuole accumulation was detectable after 21days. The resuscitated hMSCs were also induced into neurocytes and expressed nestin and neuron-specific enolase (NSE), which are special surface markers associated with neural cells at different stages. This study suggested that resuscitated hMSCs should still be a population of pluripotential cells and should be accessible for establishing an abundant hMSC reservoir for further experiment and treatment of various clinical diseases.  相似文献   

20.
Limbal stem cells (LSC) maintain the transparency of the corneal epithelium. Chemical burns lead the loss of LSC inducing an up-regulation of pro-inflammatory and pro-angiogenic factors, triggering corneal neovascularization and blindness. Adipose tissue-derived mesenchymal stem cells (AT-MSC) have shown promise in animal models to treat LSC deficiency (LSCD), but there are not studies showing their efficacy when primed with different media before transplantation. We cultured AT-MSC with standard medium and media used to culture LSC for clinical application. We demonstrated that different media changed the AT-MSC paracrine secretion showing different paracrine effector functions in an in vivo model of chemical burn and in response to a novel in vitro model of corneal inflammation by alkali induction. Treatment of LSCD with AT-MSC changed the angiogenic and inflammatory cytokine profile of mice corneas. AT-MSC cultured with the medium that improved their cytokine secretion, enhanced the anti-angiogenic and anti-inflammatory profile of the treated corneas. Those corneas also presented better outcome in terms of corneal transparency, neovascularization and histologic reconstruction. Priming human AT-MSC with LSC specific medium can potentiate their ability to improve corneal wound healing, decrease neovascularization and inflammation modulating paracrine effector functions in an in vivo optimized rat model of LSCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号