首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
:分析了当前常用的标准化方法在肿瘤基因芯片中引起错误分类的原因,提出了一种基于类均值的标准化方法.该方法对基因表达谱进行双向标准化,并将标准化过程与聚类过程相互缠绕,利用聚类结果来修正参照表达水平.选取了5组肿瘤基因芯片数据,用层次聚类和K-均值聚类算法在不同的方差水平上分别对常用的标准化和基于类均值的标准化处理后的基因表达数据进行聚类分析比较.实验结果表明,基于类均值的标准化方法能有效提高肿瘤基因表达谱聚类结果的质量.  相似文献   

2.
Tumor-infiltrating immune/inflammatory cells, the important components of the tumor microenvironment (TME), remarkably affect the progression of human cancers. To understand the actual conditions within the TME of colorectal cancer (CRC), the interrelationship among tumor-infiltrating neutrophils, M2 macrophages, and regulatory T-cells (Tregs) was systematically analyzed. The infiltration conditions of CD66b+ neutrophils, CD163+ M2 macrophages, and FOXP3+ Tregs in tissue microarrays including 1021 cases of CRC were determined by immunohistochemical analysis. The prediction power of these immune cells for CRC prognosis was evaluated by subgroup analysis of the CRC cohort. Results revealed the existence pattern of infiltrating neutrophils, and Tregs/M2 macrophages fulfilled a “X-low implies Y-high” Boolean relationship, indicative of a mutually exclusive correlation between neutrophils and M2 macrophages, and between neutrophils and Tregs in the TME of CRC. What’s more, the tumor-infiltrating M2 macrophages and Tregs were associated with adverse prognostic factors, whereas neutrophils were corelated with favorable factors. The high infiltration of neutrophils predicted longer survival and better chemotherapeutic response. Nonetheless, high infiltration of M2 macrophages and Tregs predicted poor prognosis. The combination of these tumor-infiltrating immune cells can serve as an effective predictor for the survival of CRC and for the chemotherapeutic outcomes of stage II–III patients.   相似文献   

3.
4.
There are estimated to be ~1000 members of the Ya5 Alu subfamily of retroposons in humans. This subfamily has a distribution restricted to humans, with a few copies in gorillas and chimpanzees. Fifty-seven Ya5 elements were previously cloned from a HeLa-derived randomly sheared total genomic library, sequenced, and screened for polymorphism in a panel of 120 unrelated humans. Forty-four of the 57 cloned Alu repeats were monomorphic in the sample and 13 Alu repeats were dimorphic for insertion presence/absence. The observed distribution of sample frequencies of the 13 dimorphic elements is consistent with the theoretical expectation for elements ascertained in a single diploid cell line. Coalescence theory is used to compute expected total pedigree branch lengths for monomorphic and dimorphic elements, leading to an estimate of human effective population size of ~18,000 during the last one to two million years.  相似文献   

5.
6.
7.
8.
9.
10.
The vegetal region of the Ilyanassa egg, incorporated into thepolar lobe and segregated to the D blastomere, appears to havean organizing influence in development. The results of deletingindividual micromeres of the first three quartets, and the 4dcell, indicate that most of these cells play rather distinctivedevelopmental roles. Both cytoplasmic segregation and embryonicinduction are believed to be involved in determining the fateof cells during development in Ilyanassa. Comparisons are madewith other forms.  相似文献   

11.
目的探讨Alu序列甲基化与乳腺癌转移潜能的关系。方法用亚硫酸氢盐修饰联合限制性内切酶分析法(combined bisulfite restriction analysis,COBRA)、亚硫酸氢盐修饰结合直接测序法(bisulfite sequencing,BSP)检测两株转移能力不同的乳腺癌细胞系MCF7和MDA—MB-435S中Alu甲基化状态,每个样品挑取10个克隆测序。结果MCF7和MDA—MB-435S中Alu甲基化水平均明显低于报道的正常人体细胞Alu甲基化水平,但MCF7中Alu的甲基化水平明显高于MDA-MB-435S。同时,Alu甲基化位点在基因组中分布不均匀。结论乳腺癌的转移潜能可能与Alu序列的去甲基化以及去甲基化位点的分布相关,值得进一步探讨。  相似文献   

12.
13.
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Paradoxically, however, some cancers seem to contain stem-like cells (cancer stem cells). To help resolve this paradox, we investigated whether established malignant cell lines, which have been maintained over years in culture, contain a subpopulation of stem cells. We have shown that four cancer cell lines contain a small side population (SP), which, in many normal tissues, is enriched for stem cells of the tissue. We have also shown that SP cells in C6 glioma cell line, but not non-SP cells, can generate both SP and non-SP cells in culture and are largely responsible for the in vivo malignancy of this cell line. We propose that many cancer cell lines contain a minor subpopulation of stem cells that is enriched in a SP, can be maintained indefinitely in culture, and is crucial for their malignancy.  相似文献   

14.
15.
前列腺干细胞抗原(PSCA)为细胞膜表面抗原,在正常前列腺组织中低表达,在雄激素依赖性和非依赖性前列腺癌组织中高表达,有较高的组织特异性,是前列腺癌治疗的理想靶标,近年来以PSCA为靶点的前列腺癌治疗性疫苗的研究已成为热点。我们简要综述以PSCA为靶点治疗前列腺癌的研究进展。  相似文献   

16.
17.
The Vibrio cholerae type II secretion (T2S) machinery is a multiprotein complex that spans the cell envelope. When the T2S system is inactivated, cholera toxin and other exoproteins accumulate in the periplasmic compartment. Additionally, loss of secretion via the T2S system leads to a reduced growth rate, compromised outer membrane integrity, and induction of the extracytoplasmic stress factor RpoE (A. E. Sikora, S. R. Lybarger, and M. Sandkvist, J. Bacteriol. 189:8484-8495, 2007). In this study, gene expression profiling reveals that inactivation of the T2S system alters the expression of genes encoding cell envelope components and proteins involved in central metabolism, chemotaxis, motility, oxidative stress, and iron storage and acquisition. Consistent with the gene expression data, molecular and biochemical analyses indicate that the T2S mutants suffer from internal oxidative stress and increased levels of intracellular ferrous iron. By using a tolA mutant of V. cholerae that shares a similar compromised membrane phenotype but maintains a functional T2S machinery, we show that the formation of radical oxygen species, induction of oxidative stress, and changes in iron physiology are likely general responses to cell envelope damage and are not unique to T2S mutants. Finally, we demonstrate that disruption of the V. cholerae cell envelope by chemical treatment with polymyxin B similarly results in induction of the RpoE-mediated stress response, increased sensitivity to oxidants, and a change in iron metabolism. We propose that many types of extracytoplasmic stresses, caused either by genetic alterations of outer membrane constituents or by chemical or physical damage to the cell envelope, induce common signaling pathways that ultimately lead to internal oxidative stress and misregulation of iron homeostasis.Vibrio cholerae, a rod-shaped, highly motile, gram-negative bacterium, is the causative agent of the life threatening diarrheal disease cholera (59). The type II secretion (T2S) system plays an important role in the pathogenesis of V. cholerae by secreting cholera toxin (63), which is largely responsible for the symptoms of the disease (33). The T2S system is widespread and well conserved in gram-negative bacteria inhabiting a variety of ecological niches and likely contributes to environmental survival as well as to virulence (11, 21). In V. cholerae, secretion via the T2S machinery is supported by a transenvelope complex of 12 Eps proteins (EpsC to EpsN) and the type 4 prepilin peptidase PilD (VcpD) (25, 44, 63). Transport of exoproteins by the T2S system occurs via a two-step process. The first step, which is either Sec or Tat dependent, requires recognition of the N-terminal signal peptide of the exoproteins and translocation through the inner membrane to the periplasm. Then the folded proteins engage the T2S machinery and are subsequently exported across the outer membrane to the extracellular milieu (23, 29).Besides periplasmic accumulation of exoproteins, additional phenotypes of T2S mutants are reported for an increasing number of species, possibly indicating involvement of the T2S system in other important cellular processes. For example, alterations in outer membrane protein composition have been described for T2S mutants of V. cholerae, Aeromonas hydrophila, marine Vibrio sp. strain 60, and Shewanella oneidensis (30, 32, 63, 64). The levels of outer membrane porins OmpU, OmpT, and OmpS are decreased in T2S mutants of V. cholerae (63, 65), and likewise, disruption of T2S genes in A. hydrophila leads to diminished quantities of OmpF and OmpS (30). Similarly, the amounts of the c-type cytochromes MtrC and OmcA in the outer membranes of S. oneidensis T2S mutants are reduced (64). Furthermore, we have shown that inactivation of the T2S system in V. cholerae results in a reduced growth rate, compromised outer membrane integrity, and, as a consequence, induction of RpoE activity. In addition, our studies showed that V. cholerae T2S mutants are unable to survive the passage through the infant mouse gastrointestinal tract (65). Growth defects at low temperatures under laboratory conditions as well as in tap water and amoebae were also observed for T2S mutants of Legionella pneumophila (68).Interestingly, differential abundance of proteins involved in phosphate metabolism and iron uptake has been revealed by proteomic analysis of culture supernatants isolated from wild-type and T2S mutant strains of Pseudoaltermonas tunicata (22). Based on these results, it has been suggested that the T2S system might be involved in iron acquisition. Similarly, certain T2S mutants of Erwinia chrysanthemi exhibit defects indicative of changes in iron homeostasis (17). It has also been noted that the level of aconitate hydratase, an iron-sulfur cluster-containing enzyme, is reduced in L. pneumophila T2S mutants (16).In this study, in an attempt to explain the phenotypes associated with loss of T2S, we performed microarray gene expression profiling of wild-type and T2S-deficient strains. Our data revealed that inactivation of the T2S machinery results in a metabolic feedback loop leading to oxidative stress and changes in iron metabolism. By analyzing another V. cholerae mutant that shares a similar cell envelope phenotype while remaining competent for T2S, we show that the changes in iron homeostasis and oxidative stress are linked to cell envelope damage and extracytoplasmic stress.  相似文献   

18.
When cells of Escherichia coli THU were starved for thymine, they continued to grow without division for at least two successive volume doublings at their initial rate. Within experimental error this average rate of volume increase, 0.21 mum(3) per hr, was identical with that observed in control cultures during two generations of growth in the presence of thymine. This growth rate was also independent of the age of the cells at the time of starvation. These results are consistent with the hypothesis, proposed earlier, that growth rates are controlled by uptake sites for binding, transport, or accumulation of compounds into the cell, that the number of these sites is constant throughout most of the cell cycle, and that this number doubles near or at cell division.  相似文献   

19.
The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White) from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin – a key cytoskeleton component – was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog). Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号