首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the α4, α5, and β2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at the NMJ. Topological maturation of AChR clusters was delayed in targeted mutant mice lacking laminin α5 and arrested in mutants lacking both α4 and α5. Analysis of chimeric laminins in vivo and of mutant myotubes cultured aneurally demonstrated that the laminins act directly on muscle cells to promote postsynaptic maturation. Immunohistochemical studies in vivo and in vitro along with analysis of targeted mutants provide evidence that laminin-dependent aggregation of dystroglycan in the postsynaptic membrane is a key step in synaptic maturation. Another synaptically concentrated laminin receptor, Bcam, is dispensable. Together with previous studies implicating laminins as organizers of presynaptic differentiation, these results show that laminins coordinate post- with presynaptic maturation.  相似文献   

2.
The motor neuron, the Schwann cell and the muscle cell are highly specialized at the vertebrate skeletal neuromuscular junction (NMJ). The muscle cell surface contains a high local density of acetylcholine (ACh) receptors (AChRs), acetylcholinesterase (AChE) and their interacting macromolecules at the NMJ, forming the postsynaptic specializations. During the early stages of development, the incoming nerve terminal induces the formation of these postsynaptic specializations; the nerve secretes agrin and neuregulin (NRG), which are known to aggregate existing AChRs and to increase the expression of AChR at the synaptic region, respectively. In addition, adenosine 5'-triphosphate (ATP) is stored at the motor nerve terminals and is coreleased with ACh during muscle contraction. Recent evidence suggests that ATP can play a role in forming and maintaining the postsynaptic specializations by activating its corresponding receptors. In particular, one of the nucleotide receptor subtypes, the P2Y(1) receptor, is specifically localized at the NMJs. The gene expression of AChR and AChE is upregulated after the activation of P2Y(1) receptors. Thus, the synaptic ATP together with agrin and NRG can act as a synapse-organizing factor to induce the expression of postsynaptic functional effectors.  相似文献   

3.
As synapses form and mature the synaptic partners produce organizing molecules that regulate each other’s differentiation and ensure precise apposition of pre- and post-synaptic specializations. At the skeletal neuromuscular junction (NMJ), these molecules include agrin, a nerve-derived organizer of postsynaptic differentiation, and synaptic laminins, muscle-derived organizers of presynaptic differentiation. Both become concentrated in the synaptic cleft as the NMJ develops and are retained in adulthood. Here, we used mutant mice to ask whether these organizers are also required for synaptic maintenance. Deletion of agrin from a subset of adult motor neurons resulted in the loss of acetylcholine receptors and other components of the postsynaptic apparatus and synaptic cleft. Nerve terminals also atrophied and eventually withdrew from muscle fibers. On the other hand, mice lacking the presynaptic organizer laminin-α4 retained most of the synaptic cleft components but exhibited synaptic alterations reminiscent of those observed in aged animals. Although we detected no marked decrease in laminin or agrin levels at aged NMJs, we observed alterations in the distribution and organization of these synaptic cleft components suggesting that such changes could contribute to age-related synaptic disassembly. Together, these results demonstrate that pre- and post-synaptic organizers actively function to maintain the structure and function of adult NMJs.  相似文献   

4.
The neuromuscular junction (NMJ) is the large, cholinergic relay synapse through which mammalian motor neurons control voluntary muscle contraction. Structural changes at the NMJ can result in neurotransmission failure, resulting in weakness, atrophy and even death of the muscle fiber. Many studies have investigated how genetic modifications or disease can alter the structure of the mouse NMJ. Unfortunately, it can be difficult to directly compare findings from these studies because they often employed different parameters and analytical methods. Three protocols are described here. The first uses maximum intensity projection confocal images to measure the area of acetylcholine receptor (AChR)-rich postsynaptic membrane domains at the endplate and the area of synaptic vesicle staining in the overlying presynaptic nerve terminal. The second protocol compares the relative intensities of immunostaining for synaptic proteins in the postsynaptic membrane. The third protocol uses Fluorescence Resonance Energy Transfer (FRET) to detect changes in the packing of postsynaptic AChRs at the endplate. The protocols have been developed and refined over a series of studies. Factors that influence the quality and consistency of results are discussed and normative data are provided for NMJs in healthy young adult mice.  相似文献   

5.
Agrin, a synapse-organizing protein externalized by motor axons at the neuromuscular junction (NMJ), initiates a signaling cascade in muscle cells leading to aggregation of postsynaptic proteins, including acetylcholine receptors (AChRs). We examined whether nitric oxide synthase (NOS) activity is required for agrin-induced aggregation of postsynaptic AChRs at the embryonic NMJ in vivo and in cultured muscle cells. Inhibition of NOS reduced AChR aggregation at embryonic Xenopus NMJs by 50-90%, whereas overexpression of NOS increased AChR aggregate area 2- to 3-fold at these synapses. NOS inhibitors completely blocked agrin-induced AChR aggregation in cultured embryonic muscle cells. Application of NO donors to muscle cells induced AChR clustering in the absence of agrin. Our results indicate that NOS activity is necessary for postsynaptic differentiation of embryonic NMJs and that NOS is a likely participant in the agrin-MuSK signaling pathway of skeletal muscle cells.  相似文献   

6.
When rat soleus muscles fibers regenerated after notexin-induced damage, AChRs were present at high density on the surface of the new muscle fibers at the sites of the original NMJs, even if the intact motor axons were not present during regeneration. Some AChR molecules which were labelled with R-BgTx before notexin-induced damage persisted for some days at junctional sites after new muscle fibres had regenerated. During muscle fiber degeneration, components of the muscle fiber plasma membrane appeared to remain longer in the junctional region than elsewhere. When muscles on which new "ectopic" NMJs had been forming for at least 2 weeks were damaged, AChR clusters together with sites of high AChE activity were present 2 weeks later on the regenerated muscles in the region of new NMJ formation, even if the "foreign" nerve was not intact during the period of regeneration. If ectopic NMJs had been forming for only 4 days at the time of muscle and nerve damage, neither AChR clusters nor AChE activity were detected on the regenerated muscle fibers.  相似文献   

7.
Reciprocal signals between the motor axon and myofiber induce structural and functional differentiation in the developing neuromuscular junction (NMJ). Elevation of presynaptic acetylcholine (ACh) release on nerve-muscle contact and the correlated increase in axonal-free calcium are triggered by unidentified membrane molecules. Restriction of axon growth to the developing NMJ and formation of active zones for ACh release in the presynaptic terminal may be induced by molecules in the synaptic basal lamina, such as S-laminin, heparin binding growth factors, and agrin. Acetylcholine receptor (AChR) synthesis by muscle cells may be increased by calcitonin gene-related peptide (CGRP), ascorbic acid, and AChR-inducing activity (ARIA)/heregulin, which is the best-established regulator. Heparin binding growth factors, proteases, adhesion molecules, and agrin all may be involved in the induction of AChR redistribution to form postsynaptic-like aggregates. However, the strongest case has been made for agrin's involvement. “Knockout” experiments have implicated agrin as a primary anterograde signal for postsynaptic differentiation and muscle-specific kinase (MuSK), as a putative agrin receptor. It is likely that both presynaptic and postsynaptic differentiation are induced by multiple molecular signals. Future research should reveal the physiological roles of different molecules, their interactions, and the identity of other molecular participants.  相似文献   

8.
Clustering of acetylcholine receptors (AChR) at the postsynaptic membrane is a crucial step in the development of neuromuscular junctions (NMJ). During development and after denervation, aneural AChR clusters form on the sarcolemma. Recent studies suggest that these receptors are critical for guiding and initiating synaptogenesis. The aim of this study is to investigate the effect of agrin and laminin‐1; agents with known AChR clustering activity; on NMJ formation and muscle maturation. Primary myoblasts were differentiated in vitro on collagen, laminin or collagen and laminin‐coated surfaces in the presence or absence of agrin and laminin. The pretreated cells were then subject to innervation by PC12 cells. The number of neuromuscular junctions was assessed by immunocytochemical co‐localization of AChR clusters and the presynaptic marker synaptophysin. Functional neuromuscular junctions were quantitated by analysis of the level of spontaneous as well as neuromuscular blocker responsive contractile activity and muscle maturation was assessed by the degree of myotube striation. Agrin alone did not prime muscle for innervation while a combination of agrin and laminin pretreatment increased the number of neuromuscular junctions formed and enhanced acetylcholine based neurotransmission and myotube striation. This study has direct clinical relevance for treatment of denervation injuries and creating functional neuromuscular constructs for muscle tissue repair. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 551–565, 2016  相似文献   

9.
Neuronal network formation depends on properly timed and localized generation of presynaptic as well as postsynaptic structures. Although of utmost importance for understanding development and plasticity of the nervous system and neurodegenerative diseases, the molecular mechanisms that ensure the fine-control needed for coordinated establishment of pre- and postsynapses are still largely unknown. We show that the F-actin-binding protein Abp1 is prominently expressed in the Drosophila nervous system and reveal that Abp1 is an important regulator in shaping glutamatergic neuromuscular junctions (NMJs) of flies. STED microscopy shows that Abp1 accumulations can be found in close proximity of synaptic vesicles and at the cell cortex in nerve terminals. Abp1 knock-out larvae have locomotion defects and underdeveloped NMJs that are characterized by a reduced number of both type Ib synaptic boutons and branches of motornerve terminals. Abp1 is able to indirectly trigger Arp2/3 complex-mediated actin nucleation and interacts with both WASP and Scar. Consistently, Arp2 and Arp3 loss-of-function also resulted in impairments of bouton formation and arborization at NMJs, i.e. fully phenocopied abp1 knock-out. Interestingly, neuron- and muscle-specific rescue experiments revealed that synaptic bouton formation critically depends on presynaptic Abp1, whereas the NMJ branching defects can be compensated for by restoring Abp1 functions at either side. In line with this presynaptic importance of Abp1, also presynaptic Arp2 and Arp3 are crucial for the formation of type Ib synaptic boutons. Interestingly, presynaptic Abp1 functions in NMJ formation were fully dependent on the Arp2/3 complex, as revealed by suppression of Abp1-induced synaptic bouton formation and branching of axon terminals upon presynaptic Arp2 RNAi. These data reveal that Abp1 and Arp2/3 complex-mediated actin cytoskeletal dynamics drive both synaptic bouton formation and NMJ branching. Our data furthermore shed light on an intense bidirectional functional crosstalk between pre- and postsynapses during the development of synaptic contacts.  相似文献   

10.
During the development of the vertebrate neuromuscular junction (NMJ), motor axon tips stop growing after contacting muscle and transform into presynaptic terminals that secrete the neurotransmitter acetylcholine and activate postsynaptic ACh receptors (AChRs) to trigger muscle contraction. The neuron-intrinsic signaling that retards axonal growth to facilitate stable nerve–muscle interaction and synaptogenesis is poorly understood. In this paper, we report a novel function of presynaptic signaling by phosphatase and tensin homologue (PTEN) in mediating a growth-to-synaptogenesis transition in neurons. In Xenopus nerve–muscle cocultures, axonal growth speed was halved after contact with muscle, when compared with before contact, but when cultures were exposed to the PTEN blocker bisperoxo (1,10-phenanthroline) oxovanadate, axons touching muscle grew ∼50% faster than their counterparts in control cultures. Suppression of neuronal PTEN expression using morpholinos or the forced expression of catalytically inactive PTEN in neurons also resulted in faster than normal axonal advance after contact with muscle cells. Significantly, interference with PTEN by each of these methods also led to reduced AChR clustering at innervation sites in muscle, indicating that disruption of neuronal PTEN signaling inhibited NMJ assembly. We thus propose that PTEN-dependent slowing of axonal growth enables the establishment of stable nerve–muscle contacts that develop into NMJs.  相似文献   

11.
The highly organized pattern of acetylcholinesterase (AChE) molecules attached to the basal lamina of the neuromuscular junction (NMJ) suggests the existence of specific binding sites for their precise localization. To test this hypothesis we immunoaffinity purified quail globular and collagen-tailed AChE forms and determined their ability to attach to frog NMJs which had been pretreated with high-salt detergent buffers. The NMJs were visualized by labeling acetylcholine receptors (AChRs) with TRITC-α-bungarotoxin and AChE by indirect immunofluorescence; there was excellent correspondence (>97%) between the distribution of frog AChRs and AChE. Binding of the exogenous quail AChE was determined using a speciesspecific monoclonal antibody. When frog neuromuscular junctions were incubated with the globular G4/G2 quail AChE forms, there was no detectable binding above background levels, whereas when similar preparations were incubated with the collagen-tailed A12 AChE form >80% of the frog synaptic sites were also immunolabeled for quail AChE attached. Binding of the A12 quail AChE was blocked by heparin, yet could not be removed with high salt buffer containing detergent once attached. Similar results were obtained using empty myofiber basal lamina sheaths produced by mechanical or freeze-thaw damage. These experiments show that specific binding sites exist for collagen-tailed AChE molecules on the synaptic basal lamina of the vertebrate NMJ and suggest that these binding sites comprise a “molecular parking lot” in which the AChE molecules can be released, retained, and turned over.  相似文献   

12.
Peng  H. B.  Xie  H.  Dai  Z. 《Brain Cell Biology》1997,26(10):637-650
During the development of the neuromuscular junction (NMJ), motoneurons grow to the muscle cell and the nerve–muscle contact triggers the development of both presynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of acetylcholine receptors (AChRs). Previous studies have shown that the activation of tyrosine kinases and the local assembly of an actin-based cytoskeletal specialization are involved in the development of both types of specializations. To understand the link between tyrosine phosphorylation and the assembly of the cytoskeleton, we examined the localization of cortactin in relationship to synaptic development. Cortactin is a 80/85 kD F-actin binding protein and is a substrate for tyrosine kinases. It contains a proline-rich motif and an SH3 domain and is localized at sites of active F-actin assembly. Using a monoclonal antibody against cortactin, its localization at developing NMJs in culture was observed. To understand the spatial and temporal relationship between cortactin and developing synaptic structures, cultured muscle cells and spinal neurons from Xenopus embryos were treated with beads coated with heparin-binding growth-associated molecule to induce the formation of AChR clusters and SV clusters and the localization of cortactin was followed by immunofluorescence. In untreated muscle cells, cortactin is often co-localized with spontaneously formed AChR clusters. After cells were treated with beads, cortactin became localized at bead-induced AChR clusters at their earliest appearance (1 h after the addition of beads). This association was most reliably detected at the early stage of the clustering process. On the presynaptic side, cortactin localization could be detected as early as 10 min after the bead-neurite contact was established. Cortactin-enriched contacts later showed concentration of F-actin (at 1 h) and clusters of SVs (at 24 h). These data suggest that cortactin mediates the local assembly of the cytoskeletal specialization triggered by the synaptogenic signal on both nerve and muscle.  相似文献   

13.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

14.
Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.  相似文献   

15.
The neuromuscular junction (NMJ) displays considerable morphological plasticity as a result of differences in activity level, as well as aging. This is true of both presynaptic and postsynaptic components of the NMJ. Yet, despite these variations in NMJ structure, proper presynaptic to postsynaptic coupling must be maintained in order for effective cell‐to‐cell communication to occur. Here, we examined the NMJs of muscles with different activity profiles (soleus and EDL), on both slow‐ and fast‐twitch fibers in those muscles, and among young adult and aged animals. We used immunofluorescent techniques to stain nerve terminal branching, presynaptic vesicles, postsynaptic receptors, as well as fast/slow myosin heavy chain. Confocal microscopy was used to capture images of NMJs for later quantitative analysis. Data were subjected to a two‐way ANOVA (main effects for myofiber type and age), and in the event of a significant (p < 0.05) F ratio, a post hoc analysis was performed to identify pairwise differences. Results showed that the NMJs of different myofiber types routinely displayed differences in presynaptic and postsynaptic morphology (although the effect on NMJ size was reversed in the soleus and the EDL), but presynaptic to postsynaptic relationships were tightly maintained. Moreover, the ratio of presynaptic vesicles relative to nerve terminal branch length also was similar despite differences in muscles, their fiber type, and age. Thus, in the face of considerable overall structural differences of the NMJ, presynaptic to postsynaptic coupling remains constant, as does the relationship between presynaptic vesicles and the nerve terminal branches that support them. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 744–753, 2013  相似文献   

16.
The vertebrate neuromuscular junction (NMJ) is marked by molecular specializations that include postsynaptic clusters of acetylcholine receptor (AChR) and acetylcholinesterase (AChE). Whereas AChRs are aggregated in the postsynaptic muscle membrane to a density of 10,000/mum(2), AChE is concentrated, also to a high density, in the synaptic basement membrane (BM). In recent years considerable progress has been made in understanding the cellular and molecular mechanisms of AChR clustering. It is known that during the early stages of motoneuron-muscle interaction, the nerve-secreted proteoglycan agrin activates the muscle-specific kinase MuSK, which leads to the formation of a postsynaptic cytoskeletal scaffold that immobilizes and concentrates AChRs through a process generally accepted to involve diffusion-mediated trapping of the receptors. We have recently tested this diffusion-trap model at the single molecule level for the first time by using quantum-dot labeling to track individual AChRs during NMJ development. Our results showed that single AChRs exhibit Brownian-type movement, with diffusion coefficients of 10(-11) to 10(-9)cm(2)/s, until they become immobilized at "traps" assembled in response to synaptogenic stimuli. Thus, free diffusion of AChRs is an integral part of their clustering mechanism. What is the mechanism for AChE clustering? We previously showed that the A(12) asymmetric form of AChE binds to perlecan, a heparan-sulfate proteoglycan which in turn interacts with the transmembrane dystroglycan complex. Through this linkage AChE becomes bound to the muscle membrane and, like AChRs, may exhibit lateral mobility along the membrane. Consistent with this idea, pre-existent AChE at the cell surface becomes clustered together with AChRs following synaptogenic stimulation. Future studies testing diffusion-mediated trapping of AChE should provide insights into the synaptic localization of BM-bound molecules at the NMJ.  相似文献   

17.
At the developing neuromuscular junction (NMJ), physical contact between motor axons and muscle cells initiates presynaptic and postsynaptic differentiation. Using Xenopus nerve-muscle cocultures, we previously showed that innervating axons induced muscle filopodia (myopodia), which facilitated interactions between the synaptic partners and promoted NMJ formation. The myopodia were generated by nerve-released signals through muscle p120 catenin (p120ctn), a protein of the cadherin complex that modulates the activity of Rho GTPases. Because axons also extend filopodia that mediate early nerve-muscle interactions, here we test p120ctn's function in the assembly of these presynaptic processes. Overexpression of wild-type p120ctn in Xenopus spinal neurons leads to an increase in filopodial growth and synaptic vesicle (SV) clustering along axons, whereas the development of these specializations is inhibited following the expression of a p120ctn mutant lacking sequences important for regulating Rho GTPases. The p120ctn mutant also inhibits the induction of axonal filopodia and SV clusters by basic fibroblast growth factor, a muscle-derived molecule that triggers presynaptic differentiation. Of importance, introduction of the p120ctn mutant into neurons hinders NMJ formation, which is observed as a reduction in the accumulation of acetylcholine receptors at innervation sites in muscle. Our results suggest that p120ctn signaling in motor neurons promotes nerve-muscle interaction and NMJ assembly.  相似文献   

18.
The lifetime of nicotinic acetylcholine receptors (AChRs) in neuromuscular junctions (NMJs) is increased from <1 day to >1 week during early postnatal development. However, the exact timing of AChR stabilization is not known, and its correlation to the concurrent embryonic to adult AChR channel conversion, NMJ remodeling, and neuromuscular diseases is unclear. Using a novel time lapse in vivo imaging technology we show that replacement of the entire receptor population of an individual NMJ occurs end plate-specifically within hours. This makes it possible to follow directly in live animals changing stabilities of end plate receptors. In three different, genetically modified mouse models we demonstrate that the metabolic half-life values of synaptic AChRs increase from a few hours to several days after postnatal day 6. Developmental stabilization is independent of receptor subtype and apparently regulated by an intrinsic muscle-specific maturation program. Myosin Va, an F-actin-dependent motor protein, is also accumulated synaptically during postnatal development and thus could mediate the stabilization of end plate AChR.  相似文献   

19.
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.  相似文献   

20.
Motor neurons contain agrin-like molecules   总被引:8,自引:7,他引:1       下载免费PDF全文
Molecules antigenically similar to agrin, a protein extracted from the electric organ of Torpedo californica, are highly concentrated in the synaptic basal lamina of neuromuscular junctions in vertebrate skeletal muscle. On the basis of several lines of evidence it has been proposed that agrin-like molecules mediate the nerve-induced formation of acetylcholine receptor (AChR) and acetylcholinesterase (AChE) aggregates on the surface of muscle fibers at developing and regenerating neuromuscular junctions and that they help maintain these postsynaptic specializations in the adult. Here we show that anti-agrin monoclonal antibodies selectively stain the cell bodies of motor neurons in embryos and adults, and that the stain is concentrated in the Golgi apparatus. We also present evidence that motor neurons in both embryos and adults contain molecules that cause the formation of AChR and AChE aggregates on cultured myotubes and that these AChR/AChE-aggregating molecules are antigenically similar to agrin. These findings are consistent with the hypothesis that agrin-like molecules are synthesized by motor neurons, and are released from their axon terminals to become incorporated into the synaptic basal lamina where they direct the formation of synapses during development and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号