首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pei YC  Hsiao SS  Craig JC  Bensmaia SJ 《Neuron》2011,69(3):536-547
How are local motion signals integrated to form a global motion percept? We investigate the neural mechanisms of tactile motion integration by presenting tactile gratings and plaids to the fingertips of monkeys, using the tactile analogue of a visual monitor and recording the responses evoked in somatosensory cortical neurons. The perceived directions of the gratings and plaids are measured in parallel psychophysical experiments. We identify a population of somatosensory neurons that exhibit integration properties comparable to those induced by analogous visual stimuli in area MT and find that these neural responses account for the perceived direction of the stimuli across all stimulus conditions tested. The preferred direction of the neurons and the perceived direction of the stimuli can be predicted from the weighted average of the directions of the individual stimulus features, highlighting that the somatosensory system implements a vector average mechanism to compute tactile motion direction that bears striking similarities to its visual counterpart.  相似文献   

2.
When the eyes view incompatible images, binocular rivalry usually results: image constituents in corresponding parts of the monocular visual fields are not perceived simultaneously. We asked naive undergraduates to view dichoptic, dioptic, and monoptic plaids. The dichoptic images evoked strong binocular rivalry when contrast was high, especially if the component gratings were set in motion. Nevertheless, the subjects' visual systems integrated the motion information across the two eyes, producing a unitary motion percept that did not reflect the image in either eye alone. By manipulating the relative spatial scale of the gratings, we affected how well the motion cohered: the results were remarkably similar between dichoptic and traditional dioptic plaids. By manipulating the relative speed of the gratings, we systematically affected the perceived direction of motion of the plaids; these results were also remarkably similar for dichoptic and dioptic plaids. Thus, the motion analysis of dichoptic and dioptic plaids is proceeding according to very similar rules, even though the dichoptic images are incompatible and evoke binocular rivalry.  相似文献   

3.
We have examined the rates of chromosome and pole motion during anaphase in HeLa cells using differential interference contrast and polarization optics. In early anaphase both chromosomes and poles move apart. When the chromosomes are separated by a distance about equal to the metaphase spindle length, both chromosomes and poles slow but continue to move at a reduced rate. Throughout anaphase, the chromosomes move faster than the poles, so the chromosome-to-pole distance decreases. Treatment of the cells with about 5 × 10?8 M colchicine up to 45 min before observation tends to block normal formation of metaphase spindles, but more than half of the cells in metaphase go on through anaphase. In these cells, both chromosome and pole motions are essentially normal until the chromosomes are separated by a distance equal to the length of the metaphase spindle. After that time, chromosome motion is supressed and the poles move slowly toward one another. These data suggest that the mechanism of anaphase motion changes character when the chromosomes become spaced by the metaphase spindle length. We call anaphase before and after that time phase 1 and phase 2, respectively. The results are discussed in the light of a sliding tubule model for chromosome motion.  相似文献   

4.
A number of recent studies have demonstrated superior visual processing when the information is distributed across the left and right visual fields than if the information is presented in a single hemifield (the bilateral field advantage). This effect is thought to reflect independent attentional resources in the two hemifields and the capacity of the neural responses to the left and right hemifields to process visual information in parallel. Here, we examined whether a bilateral field advantage can also be observed in a high-level visual task that requires the information from both hemifields to be combined. To this end, we used a visual enumeration task--a task that requires the assimilation of separate visual items into a single quantity--where the to-be-enumerated items were either presented in one hemifield or distributed between the two visual fields. We found that enumerating large number (>4 items), but not small number (<4 items), exhibited the bilateral field advantage: enumeration was more accurate when the visual items were split between the left and right hemifields than when they were all presented within the same hemifield. Control experiments further showed that this effect could not be attributed to a horizontal alignment advantage of the items in the visual field, or to a retinal stimulation difference between the unilateral and bilateral displays. These results suggest that a bilateral field advantage can arise when the visual task involves inter-hemispheric integration. This is in line with previous research and theory indicating that, when the visual task is attentionally demanding, parallel processing by the neural responses to the left and right hemifields can expand the capacity of visual information processing.  相似文献   

5.
The mechanism of positional localization has recently been debated due to interest in the flash-lag effect, which occurs when a briefly flashed stationary stimulus is perceived to lag behind a spatially aligned moving stimulus. Here we report positional localization observed at motion offsets as well as at onsets. In the 'flash-lead' effect, a moving object is perceived to be behind a spatially concurrent stationary flash before the two disappear. With 'reverse-repmo', subjects mis-localize the final position of a moving bar in the direction opposite to the trajectory of motion. Finally, we demonstrate that simultaneous onset and offset effects lead to a perceived compression of visual space. By characterizing illusory effects observed at motion offsets as well as at onsets, we provide evidence that the perceived position of a moving object is the result of an averaging process over a short time period, weighted towards the most recent positions. Our account explains a variety of motion illusions, including the compression of moving shapes when viewed through apertures.  相似文献   

6.
The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.  相似文献   

7.
In temporal ventriloquism, auditory events can illusorily attract perceived timing of a visual onset [1-3]. We investigated whether timing of a static sound can also influence spatio-temporal processing of visual apparent motion, induced here by visual bars alternating between opposite hemifields. Perceived direction typically depends on the relative interval in timing between visual left-right and right-left flashes (e.g., rightwards motion dominating when left-to-right interflash intervals are shortest [4]). In our new multisensory condition, interflash intervals were equal, but auditory beeps could slightly lag the right flash, yet slightly lead the left flash, or vice versa. This auditory timing strongly influenced perceived visual motion direction, despite providing no spatial auditory motion signal whatsoever. Moreover, prolonged adaptation to such auditorily driven apparent motion produced a robust visual motion aftereffect in the opposite direction, when measured in subsequent silence. Control experiments argued against accounts in terms of possible auditory grouping, or possible attention capture. We suggest that the motion arises because the sounds change perceived visual timing, as we separately confirmed. Our results provide a new demonstration of multisensory influences on sensory-specific perception [5], with timing of a static sound influencing spatio-temporal processing of visual motion direction.  相似文献   

8.
The neural representation of motion aftereffects induced by various visual flows (translational, rotational, motion-in-depth, and translational transparent flows) was studied under the hypothesis that the imbalances in discharge activities would occur in favor in the direction opposite to the adapting stimulation in the monkey MST cells (cells in the medial superior temporal area) which can discriminate the mode (i.e., translational, rotational, or motion-in-depth) of the given flow. In single-unit recording experiments conducted on anaesthetized monkeys, we found that the rate of spontaneous discharge and the sensitivity to a test stimulus moving in the preferred direction decreased after receiving an adapting stimulation moving in the preferred direction, whereas they increased after receiving an adapting stimulation moving in the null direction. To consistently explain the bidirectional perception of a transparent visual flow and its unidirectional motion aftereffect by the same hypothesis, we need to assume the existence of two subtypes of MST D cells which show directionally selective responses to a translational flow: component cells and integration cells. Our physiological investigation revealed that the MST D cells could be divided into two types: one responded to a transparent flow by two peaks at the instances when the direction of one of the component flow matched the preferred direction of the cell, and the other responded by a single peak at the instance when the direction of the integrated motion matched the preferred direction. In psychophysical experiments on human subjects, we found evidence for the existence of component and integration representations in the human brain. To explain the different motion perceptions, i.e., two transparent flows during presentation of the flows and a single flow in the opposite direction to the integrated flows after stopping the flow stimuli, we suggest that the pattern-discrimination system can select the motion representation that is consistent with the perception of the pattern from two motion representations. We discuss the computational aspects related to the integration of component motion fields.  相似文献   

9.
The centrosome cycle in the mitotic cycle of sea urchin eggs   总被引:6,自引:0,他引:6  
When sea urchin eggs entering mitosis are exposed to an appropriate concentration of mercaptoethanol, the chromosome cycle is restrained while the centrosome cycle advances. The two poles of the mitotic apparatus separate into four poles, while the chromosomes remain in their metaphase arrangements until released by the removal of the mercaptoethanol. We follow the centrosomes through the stages of the generation of two poles by each original pole. In electron microscopic studies, the osmiophilic component of the centrosomes serves as an indicator of their changing forms as each pole generates two poles. In light microscopic studies, including observations of birefringence, the shapes of the polar ends of the spindles are taken as indicators of the shapes of the centrosomes. The successive stages of the centrosome cycle are (1) compact spherical centrosomes at the time of formation of the mitotic apparatus; (2) expansion and flattening of the centrosomes, leading to (3) formation of thin flat plates, perpendicular to the spindle axis. Corresponding to the extended flat shape of the centrosomes, the spindle poles are flat; microtubules 'point' to the centrosomal plate and not the centrioles. The centrioles are separated in the flattening of the centrosomes. (4) The flat plate divides into two and each of the two halves becomes more compact, defining two separate poles. Our findings resurrect and update Boveri's [5] observations and interpretations of the centrosome. Centrosomes have shapes. The shapes may be imparted to the microtubular structures that they generate. The formation of two separate centrosomes from one, in the formation of mitotic poles, is describable as a sequence of changes in shape.  相似文献   

10.
Perceptual comparison was investigated by gradually varying the relative length of two apparent motion paths, and independently determining when an initial percept was lost during the course of attribute change and when an alternative percept emerged. Dynamical comparison was indicated by a range of attribute values for which perception was bistable. Within this range, a percept that lost stability was immediately replaced by an alternative percept. Judgmental comparison was indicated by a range of attribute values for which perception was uncertain. When an initial percept was lost, an alternative percept did not immediately emerge because the alternatives being compared could not be distinguished. Differences in the effects of random noise on dynamical vs. judgmental comparison were demonstrated with computational simulations, and implications are discussed for motion energy models and solutions to the motion correspondence problem.  相似文献   

11.
E Castet  J Zanker 《Spatial Vision》1999,12(3):287-307
When a sinewave grating is moving within a cross-shaped aperture, a strongly multi-stable phenomenon is perceived. The percept switches between the coherence of an extended surface moving in a single direction and the segregation of two patterned strips sliding across each other in directions parallel to the branches of the cross. We studied how the balance between these two percepts is affected by the length of the arms and by the shape of their ends. We report here that human observers report the segregation into two surfaces more often when the branches of the cross are extended, and when the small sides of the arms are oriented parallel to the grating. Two kinds of early motion signals interact in the crossed barber-pole stimulus: (a) the signals extracted in the middle of the bars are ambiguous with regard to their direction, and usually would be interpreted as motion normal to the grating orientation; (b) the signals from regions where the grating is intersected by the borders of the aperture convey motion signals in direction of the border. Our results show that the global appearance of our display can be dramatically influenced by the reliability of motion signals located in small regions that may be separated by large distances. To explain this long-range effect, we tentatively propose the existence of a representation level situated between the extraction of low-level local signals and the final global percept. The postulated processing level is concerned with the segmenting of the entire image into surfaces that are likely to belong to the same object, even if they are not contiguous in space. This hypothetical mechanism involves the construction of coarse-scale 'patches' from the local motion signal distributions, each carrying a single velocity associated with a certain degree of reliability. Our experiments indicate that the probability of grouping together similar patches depends on their respective reliabilities.  相似文献   

12.
BACKGROUND: In anorthoscopic viewing conditions, observers can perceive a moving object through a narrow slit even when only portions of its contour are visible at any time. We used fMRI to examine the contribution of early and later visual cortical areas to dynamic shape integration. Observers' success at integrating the shape of the slit-viewed object was manipulated by varying the degree to which the stimulus was dynamically distorted. Line drawings of common objects were either moderately distorted, strongly distorted, or shown undistorted. Phenomenologically, increasing the stimulus distortion made both object shape and motion more difficult to perceive.RESULTS: We found that bilateral cortical activity in portions of the ventral occipital cortex, corresponding to known object areas within the lateral occipital complex (LOC), was inversely correlated with the degree of stimulus distortion. We found that activity in left MT+, the human cortical area specialized for motion, showed a similar pattern as the ventral occipital region. The LOC also showed greater activity to a fully visible moving object than to the undistorted slit-viewed object. Area MT+, however, showed more equivalent activity to both the slit-viewed and fully visible moving objects.CONCLUSIONS: In early retinotopic cortex, the distorted and undistorted stimuli elicited the same amount of activity. Higher visual areas, however, were correlated with the percept of the coherent object, and this correlation suggests that the shape integration is mediated by later visual cortical areas. Motion information from the dorsal stream may project to the LOC to produce the shape percept.  相似文献   

13.
To assemble a bipolar spindle, microtubules emanating from two poles must bundle into an antiparallel midzone, where plus end–directed motors generate outward pushing forces to drive pole separation. Midzone cross-linkers and motors display only modest preferences for antiparallel filaments, and duplicated poles are initially tethered together, an arrangement that instead favors parallel interactions. Pivoting of microtubules around spindle poles might help overcome this geometric bias, but the intrinsic pivoting flexibility of the microtubule–pole interface has not been directly measured, nor has its importance during early spindle assembly been tested. By measuring the pivoting of microtubules around isolated yeast spindle poles, we show that pivoting flexibility can be modified by mutating a microtubule-anchoring pole component, Spc110. By engineering mutants with different flexibilities, we establish the importance of pivoting in vivo for timely pole separation. Our results suggest that passive thermal pivoting can bring microtubules from side-by-side poles into initial contact, but active minus end–directed force generation will be needed to achieve antiparallel alignment.  相似文献   

14.
The way we perceive the visual world depends crucially on the state of the observer. In the present study we show that what we are holding in working memory (WM) can bias the way we perceive ambiguous structure from motion stimuli. Holding in memory the percept of an unambiguously rotating sphere influenced the perceived direction of motion of an ambiguously rotating sphere presented shortly thereafter. In particular, we found a systematic difference between congruent dominance periods where the perceived direction of the ambiguous stimulus corresponded to the direction of the unambiguous one and incongruent dominance periods. Congruent dominance periods were more frequent when participants memorized the speed of the unambiguous sphere for delayed discrimination than when they performed an immediate judgment on a change in its speed. The analysis of dominance time-course showed that a sustained tendency to perceive the same direction of motion as the prior stimulus emerged only in the WM condition, whereas in the attention condition perceptual dominance dropped to chance levels at the end of the trial. The results are explained in terms of a direct involvement of early visual areas in the active representation of visual motion in WM.  相似文献   

15.
When human subjects hear a sequence of two alternating pure tones, they often perceive it in one of two ways: as one integrated sequence (a single "stream" consisting of the two tones), or as two segregated sequences, one sequence of low tones perceived separately from another sequence of high tones (two "streams"). Perception of this stimulus is thus bistable. Moreover, subjects report on-going switching between the two percepts: unless the frequency separation is large, initial perception tends to be of integration, followed by toggling between integration and segregation phases. The process of stream formation is loosely named “auditory streaming”. Auditory streaming is believed to be a manifestation of human ability to analyze an auditory scene, i.e. to attribute portions of the incoming sound sequence to distinct sound generating entities. Previous studies suggested that the durations of the successive integration and segregation phases are statistically independent. This independence plays an important role in current models of bistability. Contrary to this, we show here, by analyzing a large set of data, that subsequent phase durations are positively correlated. To account together for bistability and positive correlation between subsequent durations, we suggest that streaming is a consequence of an evidence accumulation process. Evidence for segregation is accumulated during the integration phase and vice versa; a switch to the opposite percept occurs stochastically based on this evidence. During a long phase, a large amount of evidence for the opposite percept is accumulated, resulting in a long subsequent phase. In contrast, a short phase is followed by another short phase. We implement these concepts using a probabilistic model that shows both bistability and correlations similar to those observed experimentally.  相似文献   

16.
The spindle is a fusiform bipolar-microtubule array that is responsible for chromosome segregation during mitosis. Focused poles are an essential feature of spindles in vertebrate somatic cells, and pole focusing has been shown to occur through a centrosome-independent self-organization mechanism where microtubule motors cross-link and focus microtubule minus ends. Most of our understanding of this mechanism for pole focusing derives from studies performed in cell-free extracts devoid of centrosomes and kinetochores. Here, we examine how sustained force from kinetochores influences the mechanism of pole focusing in cultured cells. We show that the motor-driven self-organization activities associated with NuMA (i.e., cytoplasmic dynein) and HSET are not necessary for pole focusing if sustained force from kinetochores is inhibited in Nuf2- or Mis12-deficient cells. Instead, pole organization relies on TPX2 as it cross-links spindle microtubules to centrosome-associated mitotic asters. Thus, both motor-driven and static-cross-linking mechanisms contribute to spindle-pole organization, and kinetochore activity influences the mechanism of spindle-pole organization. The motor-driven self-organization of microtubule minus ends at spindle poles is needed to organize spindle poles in vertebrate somatic cells when kinetochores actively exert force on spindle microtubules.  相似文献   

17.
ADY1 is identified in a genetic screen for genes on chromosome VIII of Saccharomyces cerevisiae that are required for sporulation. ADY1 is not required for meiotic recombination or meiotic chromosome segregation, but it is required for the formation of four spores inside an ascus. In the absence of ADY1, prospore formation is restricted to mainly one or two spindle poles per cell. Moreover, the two spores in the dyads of the ady1 mutant are predominantly nonsisters, suggesting that the proficiency to form prospores is not randomly distributed to the four spindle poles in the ady1 mutant. Interestingly, the meiosis-specific spindle pole body component Mpc54p, which is known to be required for prospore membrane formation, is localized predominantly to only one or two spindle poles per cell in the ady1 mutant. A partially functional Myc-Pfs1p is localized to the nucleus of mononucleate meiotic cells but not to the spindle pole body or prospore membrane. These results suggest that Pfs1p is specifically required for prospore formation at selected spindle poles, most likely by ensuring the functionality of all four spindle pole bodies of a cell during meiosis II.  相似文献   

18.
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation.  相似文献   

19.
Visual adaptation is a powerful tool to probe the short-term plasticity of the visual system. Adapting to local features such as the oriented lines can distort our judgment of subsequently presented lines, the tilt aftereffect. The tilt aftereffect is believed to be processed at the low-level of the visual cortex, such as V1. Adaptation to faces, on the other hand, can produce significant aftereffects in high-level traits such as identity, expression, and ethnicity. However, whether face adaptation necessitate awareness of face features is debatable. In the current study, we investigated whether facial expression aftereffects (FEAE) can be generated by partially visible faces. We first generated partially visible faces using the bubbles technique, in which the face was seen through randomly positioned circular apertures, and selected the bubbled faces for which the subjects were unable to identify happy or sad expressions. When the subjects adapted to static displays of these partial faces, no significant FEAE was found. However, when the subjects adapted to a dynamic video display of a series of different partial faces, a significant FEAE was observed. In both conditions, subjects could not identify facial expression in the individual adapting faces. These results suggest that our visual system is able to integrate unrecognizable partial faces over a short period of time and that the integrated percept affects our judgment on subsequently presented faces. We conclude that FEAE can be generated by partial face with little facial expression cues, implying that our cognitive system fills-in the missing parts during adaptation, or the subcortical structures are activated by the bubbled faces without conscious recognition of emotion during adaptation.  相似文献   

20.
SYNOPSIS. The role of eleven different types of achromatic figures in chromosomal movement of Barbulanympha is analyzed. When only one pole is present, no chromosomes are ever connected with it, and hence they do not move. The chromosomes go through their usual life cycle including pairing, but remain in the parent nucleus, which, of course, does not divide. When two poles are present with only one pole near the nucleus, the poles, which are the distal ends of the elongate centrioles, do not cooperate in the formation of a central spindle and the chromosomal behavior is just as if there were only one pole—no movement. The same is true when more than two poles are present with only one near the nucleus.
Unless a central spindle is present, movement of chromosomes never occurs. However, when many central spindles are present, sister chromosomes may separate and move to poles which are not directly connected by a central spindle. In other words, sisters may separate without moving along a central spindle.
In binucleate cells with one central spindle the chromosomes of one nucleus move to the poles, but those of the other do not. Movement always occurs in the nucleus that has its nuclear membrane depressed by the central spindle. When two or more central spindles are present, the chromosomes of both nuclei may move to the poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号