共查询到20条相似文献,搜索用时 15 毫秒
1.
Many socio-economically important pathogens persist and grow in the outside host environment and opportunistically invade host individuals. The environmental growth and opportunistic nature of these pathogens has received only little attention in epidemiology. Environmental reservoirs are, however, an important source of novel diseases. Thus, attempts to control these diseases require different approaches than in traditional epidemiology focusing on obligatory parasites. Conditions in the outside-host environment are prone to fluctuate over time. This variation is a potentially important driver of epidemiological dynamics and affect the evolution of novel diseases. Using a modelling approach combining the traditional SIRS models to environmental opportunist pathogens and environmental variability, we show that epidemiological dynamics of opportunist diseases are profoundly driven by the quality of environmental variability, such as the long-term predictability and magnitude of fluctuations. When comparing periodic and stochastic environmental factors, for a given variance, stochastic variation is more likely to cause outbreaks than periodic variation. This is due to the extreme values being further away from the mean. Moreover, the effects of variability depend on the underlying biology of the epidemiological system, and which part of the system is being affected. Variation in host susceptibility leads to more severe pathogen outbreaks than variation in pathogen growth rate in the environment. Positive correlation in variation on both targets can cancel the effect of variation altogether. Moreover, the severity of outbreaks is significantly reduced by increase in the duration of immunity. Uncovering these issues helps in understanding and controlling diseases caused by environmental pathogens. 相似文献
2.
Opportunist saprotrophic pathogens differ from obligatory pathogens due to their capability in host-independent growth in environmental reservoirs. Thus, the outside-host environment potentially influences host-pathogen dynamics. Despite the socio-economical importance of these pathogens, theory on their dynamics is practically missing. We analyzed a novel epidemiological model that couples outside-host density-dependent growth to host-pathogen dynamics. Parameterization was based on columnaris disease, a major hazard in fresh water fish farms caused by saprotrophic Flavobacterium columnare. Stability analysis and numerical simulations revealed that the outside-host growth maintains high proportion of infected individuals, and under some conditions can drive host extinct. The model can show stable or cyclic dynamics, and the outside-host growth regulates the frequency and intensity of outbreaks. This result emerges because the density-dependence stabilizes dynamics. Our analysis demonstrates that coupling of outside-host growth and traditional host-pathogen dynamics has profound influence on disease prevalence and dynamics. This also has implications on the control of these diseases. 相似文献
3.
Praveen Papareddy Victoria Rydeng?rd Mukesh Pasupuleti Bj?rn Walse Matthias M?rgelin Anna Chalupka Martin Malmsten Artur Schmidtchen 《PLoS pathogens》2010,6(4)
The coagulation system is characterized by the sequential and highly localized activation of a series of serine proteases, culminating in the conversion of fibrinogen into fibrin, and formation of a fibrin clot. Here we show that C-terminal peptides of thrombin, a key enzyme in the coagulation cascade, constitute a novel class of host defense peptides, released upon proteolysis of thrombin in vitro, and detected in human wounds in vivo. Under physiological conditions, these peptides exert antimicrobial effects against Gram-positive and Gram-negative bacteria, mediated by membrane lysis, as well as immunomodulatory functions, by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, they are protective against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock. Moreover, the thrombin-derived peptides exhibit helical structures upon binding to lipopolysaccharide and can also permeabilize liposomes, features typical of “classical” helical antimicrobial peptides. These findings provide a novel link between the coagulation system and host-defense peptides, two fundamental biological systems activated in response to injury and microbial invasion. 相似文献
4.
5.
6.
SUMMARY Air blower prefilters servicing HEPA-filtered Biobubble housing Pneumocystis carinii -infected rats were stored for up to five months at -80°C to room temperature. After storage, 76% of immunosuppressed rats exposed to these prefilters developed P. carinii infections. In contrast, only 4% of control immunosuppressed rats exposed to autoclaved filters had P. carinii infections. These observations indicate that the organism has a dormant form that remains infective for at least several months outside the mammalian host. 相似文献
7.
Matteo Marcantonio Annapaola Rizzoli Markus Metz Roberto Rosà Giovanni Marini Elizabeth Chadwick Markus Neteler 《PloS one》2015,10(3)
West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. 相似文献
8.
9.
10.
The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila–associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates. 相似文献
11.
Evolution of pathogen virulence is affected by the route of infection. Also, alternate infection routes trigger different physiological responses on hosts, impinging on host adaptation and on its interaction with pathogens. Yet, how route of infection may shape adaptation to pathogens has not received much attention at the experimental level. We addressed this question through the experimental evolution of an outbred Drosophila melanogaster population infected by two different routes (oral and systemic) with Pseudomonas entomophila. The two selection regimes led to markedly different evolutionary trajectories. Adaptation to infection through one route did not protect from infection through the alternate route, indicating distinct genetic bases. Finally, relatively to the control population, evolved flies were not more resistant to bacteria other than Pseudomonas and showed higher susceptibility to viral infections. These specificities and trade-offs may contribute to the maintenance of genetic variation for resistance in natural populations. Our data shows that the infection route affects host adaptation and thus, must be considered in studies of host-pathogen interaction. 相似文献
12.
自噬是一种广泛存在于真核细胞中的溶酶体依赖性分解代谢途径,涉及细胞分化、饥饿耐受和免疫防御等生物学功能.其中,异体自噬被定义为真核细胞特异性识别并清除胞内病原微生物的过程,是免疫细胞行使宿主防御的重要方式.然而,许多病原微生物已经"开发"了特殊的毒力因子(包括效应蛋白质和表面蛋白质等),衍生出多种逃避或劫持自噬作用的策... 相似文献
13.
Bacteria in the environment must survive predation from bacteriophage, heterotrophic protists, and predatory bacteria. This selective pressure has resulted in the evolution of a variety of defense mechanisms, which can also function as virulence factors. Here we discuss the potential dual function of some of the mechanisms, which protect against heterotrophic protists, and how predation pressure leads to the evolution of pathogenicity. This is in accordance with the coincidental evolution hypothesis, which suggests that virulence factors arose as a response to other selective pressures, for example, predation rather than for virulence per se. In this review we discuss some of those environmental factors that may be associated with the rise of pathogens in the marine environment. In particular, we will discuss the role of heterotrophic protists in the evolution of virulence factors in marine bacteria. Finally, we will discuss the implications for expansion of current pathogens and emergence of new pathogens. 相似文献
14.
Delphine Pessoa Caetano Souto-Maior Erida Gjini Joao S. Lopes Bruno Ce?a Cláudia T. Code?o M. Gabriela M. Gomes 《PLoS computational biology》2014,10(8)
The biological effects of interventions to control infectious diseases typically depend on the intensity of pathogen challenge. As much as the levels of natural pathogen circulation vary over time and geographical location, the development of invariant efficacy measures is of major importance, even if only indirectly inferrable. Here a method is introduced to assess host susceptibility to pathogens, and applied to a detailed dataset generated by challenging groups of insect hosts (Drosophila melanogaster) with a range of pathogen (Drosophila C Virus) doses and recording survival over time. The experiment was replicated for flies carrying the Wolbachia symbiont, which is known to reduce host susceptibility to viral infections. The entire dataset is fitted by a novel quantitative framework that significantly extends classical methods for microbial risk assessment and provides accurate distributions of symbiont-induced protection. More generally, our data-driven modeling procedure provides novel insights for study design and analyses to assess interventions. 相似文献
15.
16.
M. Ann S. McMahon Jiru Xu John E. Moore Ian S. Blair David A. McDowell 《Applied microbiology》2007,73(1):211-217
This study investigated the possibility that sublethal food preservation stresses (high or low temperature and osmotic and pH stress) can lead to changes in the nature and scale of antibiotic resistance (ABR) expressed by three food-related pathogens (Escherichia coli, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus). The study found that some sublethal stresses significantly altered antibiotic resistance. Incubation at sublethal high temperature (45°C) decreased ABR. Incubation under increased salt (>4.5%) or reduced pH (<5.0) conditions increased ABR. Some of the pathogens continued to express higher levels of ABR after removal of stress, suggesting that in some cases the applied sublethal stress had induced stable increases in ABR. These results indicate that increased use of bacteriostatic (sublethal), rather than bactericidal (lethal), food preservation systems may be contributing to the development and dissemination of ABR among important food-borne pathogens. 相似文献
17.
Potential Pathogens in the Environment: Cultural Reactions and Nucleic Acid Studies on Klebsiella pneumoniae from Clinical and Environmental Sources 总被引:1,自引:11,他引:1 下载免费PDF全文
The phenotypic and nucleic acid properties of Klebsiella pneumoniae have been studied on cultures obtained from six different habitats (humans, vegetables, seeds, trees, rivers, and pulp mills). The 19 cultural reactions of 107 isolates varied significantly only in tryptophanase activity and dulcitol fermentation. The percentage of guanine plus cytosine base composition of 41 isolates varied from 53.9 to 59.2%. The range of percentage of guanine plus cytosine base composition for environmental klebsiellas was broader than that for the cultures of human origin. The range of deoxyribonucleic acid relative reassociation (homology) to the human K. pneumoniae reference strain extended from 5% to 100% and the chromosome molecular weights ranged from 2,200 × 106 to 3,000 × 106. The species of K. pneumoniae is thus molecularly more heterogeneous than previously thought and most isolates of human, pulp mill, and river origin are genetically indistinguishable. The presence of K. pneumoniae therefore represents a deterioration of the microbiological quality of the environment and should be considered of public health significance. At the present time the health significance of the molecularly more divergent strains, primarily of vegetable and seed origin, their relationship to klebsiellas of human origin, or to other genera of the Enterobacteriaceae is unclear. 相似文献
18.
19.
20.
Jamie L. Rothenburger Chelsea G. Himsworth Nicole M. Nemeth David L. Pearl Claire M. Jardine 《EcoHealth》2018,15(1):82-95
Worldwide, Norway rats (Rattus norvegicus) carry a number of zoonotic pathogens. Many studies have identified rat-level risk factors for pathogen carriage. The objective of this study was to examine associations between abundance, microenvironmental and weather features and Clostridium difficile, antimicrobial-resistant (AMR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) carriage in urban rats. We assessed city blocks for rat abundance and 48 microenvironmental variables during a trap-removal study, then constructed 32 time-lagged temperature and precipitation variables and fitted multivariable logistic regression models. The odds of C. difficile positivity were significantly lower when mean maximum temperatures were high (≥ 12.89°C) approximately 3 months before rat capture. Alley pavement condition was significantly associated with AMR E. coli. Rats captured when precipitation was low (< 49.40 mm) in the 15 days before capture and those from blocks that contained food gardens and institutions had increased odds of testing positive for MRSA. Different factors were associated with each pathogen, which may reflect varying pathogen ecology including exposure and environmental survival. This study adds to the understanding of how the microenvironment and weather impacts the epidemiology and ecology of zoonotic pathogens in urban ecosystems, which may be useful for surveillance and control activities. 相似文献