首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated levels of CO2 and O3 affect plant growth and phytochemistry, which in turn can alter physiological performance of associated herbivores. Little is known, however, about how generalist insect herbivores respond behaviorally to CO2‐ and O3‐mediated changes in their host plants. This research examined the effects of elevated CO2 and O3 levels on host plant preferences and consumption of forest tent caterpillar (FTC, Malacosoma disstria Hbn.) larvae. Dual choice feeding assays were performed with foliage from birch (Betula papyrifera Marsh.) and aspen (Populus tremuloides Michx., genotypes 216 and 259). Trees were grown at the Aspen Free Air CO2 Enrichment (FACE) facility near Rhinelander, WI, USA, and had been exposed to ambient or elevated concentrations of CO2 and/or O3. Levels of nutritional and secondary compounds were quantified through phytochemical analyses. The results showed that elevated O3 levels increased FTC larval preferences for birch compared with aspen, whereas elevated CO2 levels had the opposite effect. In assays with the two aspen genotypes, addition of both CO2 and O3 caused a shift in feeding preferences from genotype 259 to genotype 216. Consumption was unaffected by experimental treatments in assays comparing aspen and birch, but were increased for larvae given high O3 foliage in the aspen genotype assays. Elevated levels of CO2 and O3 altered tree phytochemistry, but did not explain shifts in feeding preferences. The results demonstrate that increased levels of CO2 and O3 can alter insect host plant preferences both between and within tree species. Also, consequences of altered host quality (e.g., compensatory consumption) may be buffered by partial host shifts in situations when alternative plant species are available. Environmentally induced changes in host plant preferences may have the potential to alter the distribution of herbivory across plant genotypes and species, as well as competitive interactions among them.  相似文献   

2.
Atmospheric change and species invasions are arguably two of the most important factors affecting the long‐term sustainability of natural ecosystems. We examined the independent and interactive effects of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) on the foliar quality of two host species and performance of an invasive folivorous insect. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown at the Aspen FACE research site in northern Wisconsin, USA, under all combinations of ambient and elevated CO2 and O3. We measured the effects of elevated CO2 and O3 on aspen and birch phytochemistry and on the survivorship, development time, growth, and fecundity of the gypsy moth (Lymantria dispar). Elevated CO2 had little effect on, whereas elevated O3 altered, the composite phytochemical profiles of aspen and birch. Nutritional quality in aspen and birch leaves was marginally affected by elevated CO2 and reduced by elevated O3. Both gases increased concentrations of phenolic and structural compounds in aspen and birch. Elevated CO2 offset reduced foliar quality under elevated O3, but only in aspen, and to a greater extent later than earlier in spring. Elevated CO2 generally had beneficial effects on, while elevated O3 detrimentally affected, gypsy moth performance. Elevated CO2 ameliorated most of the reductions in gypsy moth performance under elevated O3. Our findings suggest that atmospheric change can alter foliar quality in gypsy moth hosts sufficiently to influence gypsy moth performance, but that these responses will depend on interactions among CO2, O3, and tree species. Our findings also contrast with those of earlier studies at Aspen FACE, indicating that foliar quality responses to environmental change are likely influenced by tree stand age and longevity of exposure to pollutants to the extent that they affect plant‐herbivore interactions differently over decadal time spans.  相似文献   

3.
Monoliths of a fertile, N limited, C3 grassland community were subjected (or not) to an atmospheric CO2 enrichment (600 µmol mol‐‐1) using a Mini‐FACE system, from August 1998 to June 2001 and were subjected to two contrasting cutting frequencies (3 and 6 cuts per year). We report here the effects of the CO2 and cutting frequency factors on the plant community structure and its diversity. Species‐specific responses to elevated CO2 and cutting frequency were observed, which resulted in significant changes in the botanical composition of the grassland monoliths. Elevated CO2 significantly increased the proportion of dicotyledones (forbs + legumes) and reduced that of the monocotyledones (grasses). Management differentiated this response as elevated CO2 increased the proportion of forbs when infrequently and of legumes when frequently defoliated. However, among the two dominant forbs species only one was significantly enhanced by elevated CO2. Moreover, not all grass species responded negatively to high CO2. At a low cutting frequency, the observed decline under ambient CO2 in species diversity (Shannon‐Weaver index) and in forb species number was partly alleviated by elevated CO2. This experiment shows that the botanical composition of temperate grasslands is likely to be affected by the current rise (+ 0.5% per year) in the atmospheric CO2 concentration, and that grassland management guidelines may need to be adapted to a future high CO2 world.  相似文献   

4.
  • 1 Natural forest systems constitute a major portion of the world's land area, and are subject to the potentially negative effects of both global climate change and invasion by exotic insects. A suite of invasive weevils has become established in the northern hardwood forests of North America. How these insects will respond to increasing CO2 or O3 is unknown.
  • 2 The present study examined the effects of elevated atmospheric CO2 and O3 on the invasive weevil Polydrusus sericeus Schaller at the Aspen Free Air CO2 Enrichment (FACE) site near Rhinelander, Wisconsin. A performance assay was conducted in the laboratory during the summer of 2007 using mated pairs of P. sericeus fed a combination of aspen, birch and maple foliage. We recorded leaf area consumption, oviposition and adult longevity. We also conducted visual abundance surveys in the field from 2004 to 2007 on aspen and birch at Aspen FACE.
  • 3 Elevated CO2, but not O3, significantly affected P. sericeus performance. Female, but not male, longevity was reduced under elevated CO2. Polydrusus sericeus also produced fewer eggs under elevated CO2 conditions compared with ambient conditions. Adult P. sericeus strongly preferred birch over both aspen and maple, regardless of fumigation treatment.
  • 4 The effects of elevated CO2 on P. sericeus populations at Aspen FACE were minimal, and varied among years and host tree species. Polydrusus sericeus abundance was significantly greater on birch than aspen. Over the long term, elevated CO2 may reduce adult female longevity and fecundity of P. sericeus. Further studies are needed to evaluate how this information may scale to ecosystem impacts.
  相似文献   

5.
Elevated CO2 interactions with other factors affects the plant performance. Regarding the differences between cultivars in response to CO2 concentrations, identifying the cultivars that better respond to such conditions would maximize their potential benefits. Increasing the ability of plants to benefit more from elevated CO2 levels alleviates the adverse effects of photoassimilate accumulation on photosynthesis and increases the productivity of plants. Despite its agronomic importance, there is no information about the interactive effects of elevated CO2 concentration and plant growth regulators (PGRs) on potato (Solanum tuberosum L.) plants. Hence, the physiological response and source-sink relationship of potato plants (cvs. Agria and Fontane) to combined application of CO2 levels (400 vs. 800 µmol mol−1) and plant growth regulators (PGR) [6-benzylaminopurine (BAP) + Abscisic acid (ABA)] were evaluated under a controlled environment. The results revealed a variation between the potato cultivars in response to a combination of PGRs and CO2 levels. Cultivars were different in leaf chlorophyll content; Agria had higher chlorophyll a, b, and total chlorophyll content by 23, 43, and 23%, respectively, compared with Fontane. The net photosynthetic rate was doubled at the elevated compared with the ambient CO2. In Agria, the ratio of leaf intercellular to ambient air CO2 concentrations [Ci:Ca] was declined in elevated-CO2-grown plants, which indicated the stomata would become more conservative at higher CO2 levels. On the other hand, the increased Ci:Ca in Fontane showed a stomatal acclimation to higher CO2 concentration. The higher leaf dark respiration of the elevated CO2-grown and BAP + ABA-treated plants was associated with a higher leaf soluble carbohydrates and starch content. Elevated CO2 and BAP + ABA shifted the dry matter partitioning to the belowground more than the above-media organs. The lower leaf soluble carbohydrate content and greater tuber yield in Fontane might indicate a more efficient photoassimilate translocation than Agria. The results highlighted positive synergic effects of the combined BAP + ABA and elevated CO2 on tuber yield and productivity of the potato plants.  相似文献   

6.
Our limited understanding of terrestrial ecosystem responses to elevated CO2 is a major constraint on predicting the impacts of climate change. A change in botanical composition has been identified as a key factor in the CO2 response with profound implications for ecosystem services such as plant production and soil carbon storage. In temperate grasslands, there is a strong consensus that elevated CO2 will result in a greater physiological stimulus to growth in legumes and to a lesser extent forbs, compared with C3 grasses, and the presumption this will lead in turn to a greater proportion of these functional groups in the plant community. However, this view is based on data mainly collected in experiments of three or less years in duration and not in experiments where defoliation has been by grazing animals. Grazing is, however, the most common management of grasslands and known in itself to influence botanical composition. In a long‐term Free Air Carbon Dioxide Enrichment (FACE) experiment in a temperate grassland managed with grazing animals (sheep), we found the response to elevated CO2 in plant community composition in the first 5 years was consistent with the expectation of increased proportions of legumes and forbs. However, in the longer term, these differences diminished so that the proportions of grasses, legumes and forbs were the same under both ambient and elevated CO2. Analysis of vegetation before and after each grazing event showed there was a sustained disproportionately greater removal (‘apparent selection’) of legumes and forbs by the grazing animals. This bias in removal was greater under elevated CO2 than ambient CO2. This is consistent with sustained faster growth rates of legumes and forbs under elevated CO2 being countered by selective defoliation, and so leading to little difference in community composition.  相似文献   

7.
1 This research was conducted at the Aspen FACE (Free Air CO2 Enrichment) site located in northern Wisconsin, U.S.A. where trembling aspen (Populus tremuloides Michaux) trees were exposed to one of four atmospheric treatments: elevated carbon dioxide (CO2; 560 µL/L), elevated ozone (O3; ambient × 1.5), elevated CO2 and O3, or ambient air. We evaluated the effects of these fumigants on aspen foliar quality and the performance of aspen blotch leafminer (Phyllonorycter tremuloidiella Braun). 2 CO2 and O3 each affected foliar quality, with the major changes consisting of an 11% reduction in nitrogen under elevated CO2 and a 20% reduction in tremulacin under elevated O3. In the CO2 + O3 treatment, nitrogen levels were reduced by 15% and CO2 ameliorated the O3‐mediated reduction in tremulacin levels. 3 Phyllonorycter tremuloidiella were allowed to colonize trees naturally. Elevated CO2 and O3 reduced colonization rates by 42 and 49% relative to ambient CO2 and O3, respectively. The only effect of fumigation treatments on larval performance occurred under elevated O3, where male development time and larval consumption increased by 8 and 28%, respectively, over insects reared under ambient O3. 4 These data demonstrate that the individual and combined effects of CO2 and O3 can alter aspen foliar chemistry and that these alterations in foliar chemistry produce little to no change in larval performance. However, both CO2 and O3 greatly reduced oviposition. In order to ascertain the full effects of CO2 and O3 on insect performance, future studies should address both population‐ and individual‐level characteristics.  相似文献   

8.
This study examined the independent and interactive effects of elevated atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) on the foliar and litter chemistry of two deciduous tree species and the frass chemistry of four lepidopteran folivores. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown under elevated levels of CO2 and/or O3 at the Aspen FACE research site in northern WI, USA. We measured the effects of CO2 and O3 on nitrogen, carbon to nitrogen (C:N), and condensed tannin levels in aspen and birch leaves and senescent litter and also in the frass of folivores fed aspen or birch green leaves. Overall, the effects of elevated CO2 on foliar chemistry were less pronounced than those of elevated O3, and aspen responded more strongly than birch. While the effects of elevated CO2 and O3 on foliar chemistry were generally reflected in frass chemistry, the magnitude of the response varied among insect species. Insect frass had higher nitrogen and condensed tannin levels and lower C:N ratios than did litter, although the magnitude of this response varied among fumigation treatments and insect species. Our findings demonstrate that the quality of insect-mediated organic deposition can be indirectly affected by atmospheric change, through altered foliar quality. Our findings also suggest that the quality of frass deposited on the forest floor via herbivory will be strongly affected by herbivore community composition.  相似文献   

9.
Couture JJ  Meehan TD  Lindroth RL 《Oecologia》2012,168(3):863-876
This study examined the independent and interactive effects of elevated carbon dioxide (CO2) and ozone (O3) on the foliar quality of two deciduous trees species and the performance of two outbreak herbivore species. Trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) were grown at the Aspen FACE research site in northern Wisconsin, USA, under four combinations of ambient and elevated CO2 and O3. We measured the effects of elevated CO2 and O3 on aspen and birch phytochemistry and on gypsy moth (Lymantria dispar) and forest tent caterpillar (Malacosoma disstria) performance. Elevated CO2 nominally affected foliar quality for both tree species. Elevated O3 negatively affected aspen foliar quality, but only marginally influenced birch foliar quality. Elevated CO2 slightly improved herbivore performance, while elevated O3 decreased herbivore performance, and both responses were stronger on aspen than birch. Interestingly, elevated CO2 largely offset decreased herbivore performance under elevated O3. Nitrogen, lignin, and C:N were identified as having strong influences on herbivore performance when larvae were fed aspen, but no significant relationships were observed for insects fed birch. Our results support the notion that herbivore performance can be affected by atmospheric change through altered foliar quality, but how herbivores will respond will depend on interactions among CO2, O3, and tree species. An emergent finding from this study is that tree age and longevity of exposure to pollutants may influence the effects of elevated CO2 and O3 on plant–herbivore interactions, highlighting the need to continue long-term atmospheric change research.  相似文献   

10.
Changes in atmospheric composition affect plant quality and herbivore performance. We used the Aspen Free Air CO2 Enrichment (FACE) facility to investigate the impacts of elevated carbon dioxide (CO2) and ozone (O3) on the performance of the aphid Cepegillettea betulaefoliae Granovsky feeding on paper birch (Betula papyrifera Marsh.). In Year 1, we simultaneously measured individual performance and population growth rates, and in Year 2 we surveyed natural aphid, predator and parasitoid populations throughout the growing season. Aphid growth and development (relative growth rate (RGR), development time, adult weight, embryo number and the birth weight of newborn nymphs) were unaffected by CO2 and O3. Aphid fecundity decreased on trees grown at elevated CO2, O3 and CO2+O3. Neither nymphal performance nor adult size were reliable indicators of future fecundity at elevated CO2 and/or O3. Aphid populations protected from natural enemies were unaffected by elevated CO2, but increased significantly at elevated O3. Individual fecundity in elevated CO2 and O3 atmospheres did not predict population growth rates, probably because of changes in the strength of intraspecific competition or the ability of the aphids to induce nutrient sinks. Natural aphid, predator and parasitoids populations (Year 2) showed few significant responses to CO2 and O3, although CO2 and O3 did affect the timing of aphid and natural enemy peak abundance. Elevated CO2 and O3 affected aphid and natural enemy populations independently: no CO2× O3 interactions were observed. We conclude that: (1) aphid individual performance did not predict population responses to CO2 and O3 and (2) elevated CO2 and O3 atmospheres are unlikely to affect C. betulaefoliae populations in the presence of natural enemy communities.  相似文献   

11.
By affecting plant growth and phytochemistry elevated CO2 may have indirect effects on the performance of herbivores. These effects show considerable variability across studies and may depend on nutrient availability, the carbon/nutrient‐balance in plant tissues and the secondary metabolism of plants. We studied the responses to elevated CO2 and different nutrient availability of 12 herbaceous plant species differing in their investment into secondary compounds. Caterpillars of the generalist herbivore Spodoptera littoralis were reared on the leaves produced and their consumption and growth rates analysed. Elevated CO2 resulted in a similar increase of biomass in all plant species, whereas the positive effect of fertilization varied among plant species. Specific leaf weight was influenced by elevated CO2, but the effect depended on nutrient level and identity of plant species. Elevated CO2 increased the C/N ratio of the leaves of most species. Caterpillars consumed more leaf material when plants were grown under elevated CO2 and low nutrients. This indicates compensatory feeding due to lower tissue quality. However, the effects of elevated CO2, nutrient availability and plant species identity on leaf consumption interacted. Both the effects of CO2 and nutrient availability on the relative growth rate of the herbivore depended on the plant species. The feeding rate of S. littoralis on plant species that do not produce nitrogen‐containing secondary compounds (NCSC) was higher under low nutrient availability. In contrast, in plants producing NCSC nutrient availability had no effect on the feeding rate. This suggests that compensatory feeding in response to low nutrient contents may not be possible if plants produce NCSC. We conclude that elevated CO2 causes species‐specific changes in the quality of plant tissues and consequently in changes in the preferences of herbivores for plant species. This could result in changes in plant community composition.  相似文献   

12.
Elevated concentrations of O3 and CO2 have both been shown to affect structure, nutrient status, and deposition of secondary metabolites in leaves of forest trees. While such studies have produced robust models of the effects of such air pollutants on tree ecophysiology and growth, few have considered the potential for broader, ecosystem-level effects after these chemically and structurally altered leaves fall as leaf litter and decay. To determine the effects of elevated O3 and/or CO2 on the subsequent decomposition and nutrient release from the leaves grown in such altered atmospheres, we grew seedlings of three widespread North American forest trees, black cherry (Prunus serotina) (BC), sugar maple (Acer saccharum) (SM), and yellow-poplar (Liriodendron tulipifera) (YP) for two growing seasons in charcoal-filtered air (CF-air=approximately 25% ambient O3), ambient O3 (1X) or twice-ambient O3 (2X) in outdoor open-top chambers. We then assayed the loss of mass and N from the litter derived from those seedlings through one year litterbag incubations in the forest floor of a neighboring forest stand. Mass loss followed linear functions and was not affected by the O3 regime in which the leaves were grown. Instantaneous decay rates (i.e. k values) averaged SM:–0.707 y-1, BC:–0.613 y-1, and YP:–0.859 y-1. N loss from ambient (1X) O3-grown SM leaves was significantly greater than from CF-air leaves: N loss from BC leaves did not differ among treatments. Significantly less N was released from CF-air-grown YP leaves than from 1X or 2X O3-treated leaves. YP leaves from plants grown in pots at 2X O3 and 350 ppm supplemental CO2 in indoor pollutant fumigation chambers (CSTRs or Continuously Stirred Tank Reactors) loss 40% as much mass and 27% as much N over one year as did leaves from YP grown in CF-air or 2X O3. Thus, for leaves from plants grown in pots in controlled environment fumigation chambers, the concentrations of both O3 and CO2 can affect N release from litter incubated in the field whereas mass loss rate was affected only by CO2. Because both mass loss and N release from leaves grown at elevated CO2 were reduced significantly (at least for yellow-poplar), forests exposed to elevated CO2 may have significantly reduced N turnover rates, thereby resulting in increased N limitation of tree growth, especially in forests which are already N-limited.  相似文献   

13.
Nitrogen cycling in northern temperate forest ecosystems could change under increasing atmospheric CO2 and tropospheric O3 as a result of quantitative and qualitative changes in plant litter production. At the Aspen Free Air CO2–O3 Enrichment (FACE) experiment, we previously found that greater substrate inputs to soil under elevated CO2 did not alter gross N transformation rates in the first 3 years of the experiment. We hypothesized that greater litter production under elevated CO2 would eventually cause greater gross N transformation rates and that CO2 effects would be nullified by elevated O3. Following our original study, we continued measurement of gross N transformation rates for an additional four years. From 1999 to 2003, gross N mineralization doubled, N immobilization increased 4-fold, but changes in microbial biomass N and soil total N were not detected. We observed year-to-year variation in N transformation rates, which peaked during a period of foliar insect damage. Elevated CO2 caused equivalent increases in gross rates of N mineralization (+34%) and NH 4 + immobilization (+36%). These results indicate greater rates of N turnover under elevated CO2, but do not indicate a negative feedback between elevated CO2 and soil N availability. Elevated O3 decreased gross N mineralization (−16%) and had no effect on NH 4 + immobilization, indicating reduced N availability under elevated O3. The effects of CO2 and O3 on N mineralization rates were mainly related to changes in litter production, whereas effects on N immobilization were likely influenced by changes in litter chemistry and production. Our findings also indicate that concomitant increases in atmospheric CO2 and O3 could lead to a negative feedback on N availability.  相似文献   

14.
This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype.  相似文献   

15.
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 (560 μl l−1) and O3 (55 nl l l−1) on leaf litter decomposition in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) at the Aspen free air CO2 enrichment (FACE) site (Wisconsin, USA). Fumigation treatments consisted of replicated ambient, +CO2, +O3, and +CO2 + O3 FACE rings. We followed mass loss and litter chemistry over 23 months, using reciprocally transplanted litterbags to separate substrate quality from environment effects. Aspen decayed more slowly than birch across all treatment conditions, and changes in decomposition dynamics of both species were driven by shifts in substrate quality rather than by fumigation environment. Aspen litter produced under elevated CO2 decayed more slowly than litter produced under ambient CO2, and this effect was exacerbated by elevated O3. Similarly, birch litter produced under elevated CO2 also decayed more slowly than litter produced under ambient CO2. In contrast to results for aspen, however, elevated O3 accelerated birch decay under ambient CO2, but decelerated decay under enriched CO2. Changes in decomposition rates (k-values) were due to CO2- and O3-mediated shifts in litter quality, particularly levels of carbohydrates, nitrogen, and tannins. These results suggest that in early-successional forests of the future, elevated concentrations of CO2 will likely reduce leaf litter decomposition, although the magnitude of effect will vary among species and in response to interactions with tropospheric O3.  相似文献   

16.
Sap-feeding insects such as aphids are the only insect herbivores that show positive responses to elevated CO2. Recent models predict that increased nitrogen will increase aphid population size under elevated CO2, but few experiments have tested this idea empirically. To determine whether soil nitrogen (N) availability modifies aphid responses to elevated CO2, we tested the performance of Macrosiphum euphorbiae feeding on two host plants; a C3 plant (Solanum dulcamara), and a C4 plant (Amaranthus viridis). We expected aphid population size to increase on plants in elevated CO2, with the degree of increase depending on the N availability. We found a significant CO2× N interaction for the response of population size for M. euphorbiae feeding on S. dulcamara: aphids feeding on plants grown in ambient CO2, low N conditions increased in response to either high N availability or elevated CO2. No population size responses were observed for aphids infesting A. viridis. Elevated CO2 increased plant biomass, specific leaf weight, and C : N ratios of the C3 plant, S. dulcamara but did not affect the C4 plant, A. viridis. Increased N fertilization significantly increased plant biomass, leaf area, and the weight : height ratio in both experiments. Elevated CO2 decreased leaf N in S. dulcamara and had no effect on A. viridis, while higher N availability increased leaf N in A. viridis and had no effect in S. dulcamara. Aphid infestation only affected the weight : height ratio of S. dulcamara. We only observed an increase in aphid population size in response to elevated CO2 or increased N availability for aphids feeding on S. dulcamara grown under low N conditions. There appears to be a maximum population growth rate that M. euphorbiae aphids can attain, and we suggest that this response is because of intrinsic limits on development time and fecundity.  相似文献   

17.
The performance of herbivore insects is determined directly by the quality of host plants. Elevated CO2 induced a decline in foliar nitrogen, which reduced the growth of chewing insects. Phloem-sucking insects (i.e. aphid), however, had species-specific responses to elevated CO2 and were the only feeding guild to respond positively to elevated CO2. Although many studies attempt to illuminate the interaction between aphids and plants under elevated CO2, few studies can explain why some aphids are more successful than other chewing insects in elevated CO2. Elevated CO2 leads to a re-allocation of the carbon and nitrogen resources in plant tissue, which increases the thickness of the microscopic structures of leaves, reduces amino acids content of leaf phloem sap and increases the secondary metabolites. Considering the complexity of aphid–plant interactions, it is difficult and unreasonable to predict the general response of aphids to elevated CO2 using a single plant component. Instead, it is more likely that aphids are able to overcome the disadvantages of the indirect effects of elevated CO2 by reducing developmental times and increasing fecundity under elevated CO2 conditions. Our results provide several clues to why some aphids are successful in elevated CO2 conditions. We review recent studies of the effects of elevated CO2 on aphids and discuss the effects of elevated CO2 on aphid performance on crops using cotton and cereal aphids as examples.  相似文献   

18.
By altering myriad aspects of leaf chemistry, increasing concentrations of CO2 and O3 in the atmosphere derived from human activities may fundamentally alter the relationships between insect herbivores and plants. Because exposure to elevated CO2 can alter the nutritional value of leaves, some herbivores may increase consumption rates to compensate. The effects of O3 on leaf nutritional quality are less clear; however, increased senescence may also reduce leaf quality for insect herbivores. Additionally, changes in secondary chemistry and the microclimate of leaves may render plants more susceptible to herbivory in elevated CO2 and O3. Damage to soybean (Glycine max L.) leaves and the size and composition of the insect community in the plant canopy were examined in large intact plots exposed to elevated CO2 (~550 μmol mol−1) and elevated O3 (1.2*ambient) in a fully factorial design with a Soybean Free Air Concentration Enrichment system (SoyFACE). Leaf area removed by folivorous insects was estimated by digital photography and insect surveys were conducted during two consecutive growing seasons, 2003 and 2004. Elevated CO2 alone and in combination with O3 increased the number of insects and the amount of leaf area removed by insect herbivores across feeding guilds. Exposure to elevated CO2 significantly increased the number of western corn rootworm (Diabrotica virgifera) adults (foliage chewer) and soybean aphids (Aphis glycines; phloem feeder). No consistent effect of elevated O3 on herbivory or insect population size was detected. Increased loss of leaf area to herbivores was associated with increased carbon-to-nitrogen ratio and leaf surface temperature. Soybean aphids are invasive pests in North America and new to this ecosystem. Higher concentrations of CO2 in the atmosphere may increase herbivory in the soybean agroecosystem, particularly by recently introduced insect herbivores. Handling editor: Gary Felton.  相似文献   

19.
One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10–30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号