共查询到20条相似文献,搜索用时 0 毫秒
1.
Sujal S. Phadke Marianna Feretzaki Shelly Applen Clancey Olaf Mueller Joseph Heitman 《PloS one》2014,9(10)
Cryptococcus gattii is a basidiomycetous human fungal pathogen that typically causes infection in tropical and subtropical regions and is responsible for an ongoing outbreak in immunocompetent individuals on Vancouver Island and in the Pacific Northwest of the US. Pathogenesis of this species may be linked to its sexual cycle that generates infectious propagules called basidiospores. A marked predominance of only one mating type (α) in clinical and environmental isolates suggests that a-α opposite-sex reproduction may be infrequent or geographically restricted, raising the possibility of an alternative unisexual cycle involving cells of only α mating type, as discovered previously in the related pathogenic species Cryptococcus neoformans. Here we report observation of hallmark features of unisexual reproduction in a clinical isolate of C. gattii (isolate 97/433) and describe genetic and environmental factors conducive to this sexual cycle. Our results are consistent with population genetic evidence of recombination in the largely unisexual populations of C. gattii and provide a useful genetic model for understanding how novel modes of sexual reproduction may contribute to evolution and virulence in this species. 相似文献
2.
Min Ni Marianna Feretzaki Wenjun Li Anna Floyd-Averette Piotr Mieczkowski Fred S. Dietrich Joseph Heitman 《PLoS biology》2013,11(9)
Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down''s syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments. 相似文献
3.
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype D. We analyzed the growth and pigment production characteristics of 139 strains of Cryptococcus spp. in L-tryptophan containing media. Nearly all strains of Cryptococcus, including each variety and serotype tested produced a pink water-soluble pigment (molecular weight of 535.2 Da) from L-tryptophan. Consequently, the partial separation of the species was based on whether the pink pigment was secreted into the medium (extracellular) or retained as an intracellular pigment. On L-tryptophan medium C. neoformans var. grubii and serotype AD produced a pink extracellular pigment. In contrast, for C. gattii, the pink pigment was localized intracellularly and masked by heavy production of brown pigments. Pigment production by C. neoformans var. neoformans was variable with some strains producing the pink extracellular pigment and others retained the pink pigment intracellularly. The pink intracellular pigment produced by strains of C. neoformans var. neoformans was masked by production of brown pigments. Cryptococcus laccase mutants failed to produce pigments from L-tryptophan. This is the first report that the enzyme laccase is involved in tryptophan metabolism. Prior to this report Cryptococcus laccase produced melanin or melanin like-pigments from heterocyclic compounds that contained ortho or para diphenols, diaminobenzenes and aminophenol compounds. The pigments produced from L-tryptophan were not melanin. 相似文献
4.
Background
Protein-O-mannosyltransferases (Pmt''s) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins.Methodology/Principal Findings
Based on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In contrast to Saccharomyces cerevisiae and Candida albicans, but similar to filamentous fungi, three putative PMT genes (PMT1, PMT2, and PMT4) were identified in the genome of the human fungal pathogen Cryptococcus neoformans. Similar to Schizosaccharomyces pombe and C. albicans, C. neoformans PMT2 is an essential gene. In contrast, the pmt1 and pmt4 single mutants are viable; however, the pmt1/pmt4 deletions are synthetically lethal. Mutation of PMT1 and PMT4 resulted in distinct defects in cell morphology and cell integrity. The pmt1 mutant was more susceptible to SDS medium than wild-type strains and the mutant cells were enlarged. The pmt4 mutant grew poorly on high salt medium and demonstrated abnormal septum formation and defects in cell separation. Interestingly, the pmt1 and pmt4 mutants demonstrated variety-specific differences in the levels of susceptibility to osmotic and cell wall stress. Delayed melanin production in the pmt4 mutant was the only alteration of classical virulence-associated phenotypes. However, the pmt1 and pmt4 mutants showed attenuated virulence in a murine inhalation model of cryptococcosis.Conclusion/Significance
These findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host. 相似文献5.
6.
Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from yeast to hyphae during a-α opposite-sex mating and α-α unisexual reproduction (same-sex mating). Infectious spores are generated during both processes. We previously identified a sex-induced silencing (SIS) pathway in the C. neoformans serotype A var. grubii lineage, in which tandem transgene arrays trigger RNAi-dependent gene silencing at a high frequency during a-α opposite-sex mating, but at an ∼250-fold lower frequency during asexual mitotic vegetative growth. Here we report that SIS also operates during α-α unisexual reproduction. A self-fertile strain containing either SXI2a-URA5 or NEO-URA5 transgene arrays exhibited an elevated silencing frequency during solo and unisexual mating compared with mitotic vegetative growth. We also found that SIS operates at a similar efficiency on transgene arrays of the same copy number during either α-α unisexual reproduction or a-α opposite-sex mating. URA5-derived small RNAs were detected in the silenced progeny of α-α unisexual reproduction and RNAi core components were required, providing evidence that SIS induced by same-sex mating is also mediated by RNAi via sequence-specific small RNAs. In addition, our data show that the SIS RNAi pathway also operates to defend the genome via squelching transposon activity during same-sex mating as it does during opposite-sex mating. Taken together, our results confirm that SIS is conserved between the divergent C. neoformans serotype A and serotype D cryptic sibling species. 相似文献
7.
Cryptococcus neoformans is a major human pathogenic fungus that can cause meningoencephalitis in immunocompromised hosts. It contains two divergent varieties, var. grubii (serotype A) and var. neoformans (serotype D), as well as hybrids (serotype AD) between these two varieties. In this study, we investigated the extent of chromosomal rearrangements between the two varieties, estimated the effects of chromosomal rearrangements on recombination frequencies, and surveyed the potential polymorphisms of the rearrangements among natural strains of the three serotypes. Through the analyses of two sequenced genomes from strains H99 (representing var. grubii) and JEC21 (representing var. neoformans), we revealed a total of 32 unambiguous chromosome rearrangements, including five translocations, nine simple inversions, and 18 complex rearrangements. Our analyses identified that overall, rearranged regions had recombination frequencies about half of those around syntenic regions. Using a direct PCR screening strategy, we examined the potential polymorphisms of 11 rearrangements among 64 natural C. neoformans strains from five countries. We found no polymorphism within var. neoformans and very limited polymorphism within var. grubii. However, strains of serotype AD showed significant polymorphism, consistent with their hybrid origins coupled with differential loss of heterozygosity. We discuss the implications of these results on the genome structure, ecology, and evolution of C. neoformans. 相似文献
8.
9.
Samantha D. M. Arras Jessica L. Chitty Kirsten L. Blake Benjamin L. Schulz James A. Fraser 《PloS one》2015,10(4)
Just as Koch’s postulates formed the foundation of early infectious disease study, Stanley Falkow’s molecular Koch’s postulates define best practice in determining whether a specific gene contributes to virulence of a pathogen. Fundamentally, these molecular postulates state that if a gene is involved in virulence, its removal will compromise virulence. Likewise, its reintroduction should restore virulence to the mutant. These approaches are widely employed in Cryptococcus neoformans, where gene deletion via biolistic transformation is a well-established technique. However, the complementation of these mutants is less straightforward. Currently, one of three approaches will be taken: the gene is reintroduced at the original locus, the gene is reintroduced into a random site in the genome, or the mutant is not complemented at all. Depending on which approach is utilized, the mutant may be complemented but other genes are potentially disrupted in the process. To counter the drawbacks of the current approaches to complementation we have created a new tool to assist in this key step in the study of a gene’s role in virulence. We have identified and characterized a small gene-free region in the C. neoformans genome dubbed the “safe haven”, and constructed a plasmid vector that targets DNA constructs to this preselected site. The plasmid vector integrates with high frequency, effectively complementing a mutant strain without disrupting adjacent genes. qRT-PCR of the flanking genes on either side of the safe haven site following integration of the targeting vector revealed no changes in their expression, and no secondary phenotypes were observed in a range of phenotypic assays including an intranasal murine infection model. Combined, these data confirm that we have successfully created a much-needed molecular resource for the Cryptococcus community, enabling the reliable fulfillment of the molecular Koch’s postulates. 相似文献
10.
11.
12.
Cryptococcus neoformans is a human opportunistic fungal pathogen responsible for ∼1/3 of HIV/AIDS deaths worldwide. This budding yeast expresses a polysaccharide capsule necessary for virulence. Capsule production inhibits phagocytosis by macrophages. Here we describe results that link copper homeostasis to capsule production and the inhibition of phagocytosis. Specifically, using Agrobacterium-mediated insertional mutagenesis, we identified an insertion in the promoter region of the putative copper transporter-encoding gene CTR2 that results in reduced expression of CTR2 and increased phagocytosis by murine RAW264.7 macrophages. The mutant also displayed sensitivity to copper starvation and defects in polysaccharide capsule production and melanization. These defects were all reversed by genetic correction of the promoter insertion by homologous targeting. Several melanization-defective mutants identified previously, those in the RIM20, RIM101, and VPS25 genes, also display sensitivity to copper starvation, reduced capsule production and increased phagocytosis. Together these results indicate a previously undescribed link between copper homeostasis to polysaccharide capsule production and phagocytosis inhibition in Cryptococcus neoformans. 相似文献
13.
14.
15.
Elizabeth Ripley Ballou Lukasz Kozubowski Connie B. Nichols J. Andrew Alspaugh 《PLoS genetics》2013,9(8)
Proliferation and morphogenesis in eukaryotic cells depend on the concerted activity of Rho-type GTPases, including Ras, Cdc42, and Rac. The sexually dimorphic fungus Cryptococcus neoformans, which encodes paralogous, non-essential copies of all three, provides a unique model in which to examine the interactions of these conserved proteins. Previously, we demonstrated that RAS1 mediates C. neoformans virulence by acting as a central regulator of both thermotolerance and mating. We report here that ras1Δ mutants accumulate defects in polarized growth, cytokinesis, and cell cycle progression. We demonstrate that the ras1Δ defects in thermotolerance and mating can be largely explained by the compromised activity of four downstream Rho-GTPases: the Cdc42 paralogs, Cdc42 and Cdc420; and the Rac paralogs, Rac1 and Rac2. Further, we demonstrate that the separate GTPase classes play distinct Ras-dependent roles in C. neoformans morphogenesis and pathogenesis. Cdc42 paralogs primarily control septin localization and cytokinesis, while Rac paralogs play a primary role in polarized cell growth. Together, these duplicate, related signaling proteins provide a robust system to allow microbial proliferation in the presence of host-derived cell stresses. 相似文献
16.
Yun C. Chang Ami Khanal Lamichhane H. Martin Garraffo Peter J. Walter Maarten Leerkes Kyung J. Kwon-Chung 《PLoS genetics》2014,10(4)
Cryptococcus neoformans encounters a low oxygen environment when it enters the human host. Here, we show that the conserved Ras1 (a small GTPase) and Cdc24 (the guanine nucleotide exchange factor for Cdc42) play an essential role in cryptococcal growth in hypoxia. Suppressor studies indicate that PTP3 functions epistatically downstream of both RAS1 and CDC24 in regulating hypoxic growth. Ptp3 shares sequence similarity to the family of phosphotyrosine-specific protein phosphatases and the ptp3Δ strain failed to grow in 1% O2. We demonstrate that RAS1, CDC24 and PTP3 function in parallel to regulate thermal tolerance but RAS1 and CDC24 function linearly in regulating hypoxic growth while CDC24 and PTP3 reside in compensatory pathways. The ras1Δ and cdc24Δ strains ceased to grow at 1% O2 and became enlarged but viable single cells. Actin polarization in these cells, however, was normal for up to eight hours after transferring to hypoxic conditions. Double deletions of the genes encoding Rho GTPase Cdc42 and Cdc420, but not of the genes encoding Rac1 and Rac2, caused a slight growth retardation in hypoxia. Furthermore, growth in hypoxia was not affected by the deletion of several central genes functioning in the pathways of cAMP, Hog1, or the two-component like phosphorylation system that are critical in the cryptococcal response to osmotic and genotoxic stresses. Interestingly, although deletion of HOG1 rescued the hypoxic growth defect of ras1Δ, cdc24Δ, and ptp3Δ, Hog1 was not hyperphosphorylated in these three mutants in hypoxic conditions. RNA sequencing analysis indicated that RAS1, CDC24 and PTP3 acted upon the expression of genes involved in ergosterol biosynthesis, chromosome organization, RNA processing and protein translation. Moreover, growth of the wild-type strain under low oxygen conditions was affected by sub-inhibitory concentrations of the compounds that inhibit these biological processes, demonstrating the importance of these biological processes in the cryptococcal hypoxia response. 相似文献
17.
文冠果可孕花与不孕花发育过程的比较研究简 总被引:1,自引:0,他引:1
吕雪芹;张敏;王頔;王莉 《植物研究》2014,34(1):85-94
利用半薄切片和透射电镜技术对文冠果可孕花和不孕花的发育过程进行观察和比较。结果显示:(1)小孢子发育初期,两种类型花花药形态无明显差别;小孢子发育双核期,可孕花花药内壁纤维层细胞壁带状加厚,无唇细胞形成。而不孕花花药同侧两个花粉囊之间唇细胞正在分化;小孢子发育成熟期,不孕花花药唇细胞完全形成;散粉期,不孕花花药开裂呈双心形,而可孕花花药则不能开裂散粉。(2)可孕花雌蕊子房内有两室,柱头细胞排列紧密,柱头逐渐发育成圆球形,周围密布乳突细胞,具中空花柱道;不孕花雌蕊柱头停止发育,无中空花柱道,子房室变小,胚囊发育退化。(3)不孕花花药绒毡层中含大量蛋白体,小泡以及乌氏体等细胞器,发育后期绒毡层解体。而可孕花花药绒毡层中细胞器和营养物质积累均较少,发育后期绒毡层解体不完全。(4)可孕花花药内花粉粒细胞壁连续无萌发孔,细胞内含物较少。不孕花花药内花粉出现3个向内凹陷的萌发孔,且花粉内含有大量造粉质体和脂类物质。 相似文献
18.
Popchai Ngamskulrungroj Felix Gilgado Josiane Faganello Anastasia P. Litvintseva Ana Lusia Leal Kin Ming Tsui Thomas G. Mitchell Marilene Henning Vainstein Wieland Meyer 《PloS one》2009,4(6)
The Cryptococcus species complex contains two sibling taxa, Cryptococcus neoformans and Cryptococcus gattii. Both species are basidiomycetous yeasts and major pathogens of humans and other mammals. Genotyping methods have identified major haploid molecular types of C. neoformans (VNI, VNII, VNB and VNIV) and of C. gattii (VGI, VGII, VGIII and VGIV). To investigate the phylogenetic relationships among these haploid genotypes, we selected 73 strains from 2000 globally collected isolates investigated in our previous typing studies, representing each of these genotypes and carried out multigene sequence analyses using four genetically unlinked nuclear loci, ACT1, IDE, PLB1 and URA5. The separate or combined sequence analyses of all four loci revealed seven clades with significant support for each molecular type. However, three strains of each species revealed some incongruence between the original molecular type and the sequence-based type obtained here. The topology of the individual gene trees was identical for each clade of C. neoformans but incongruent for the clades of C. gattii indicating recent recombination events within C. gattii. There was strong evidence of recombination in the global VGII population. Both parsimony and likelihood analyses supported three major clades of C. neoformans (VNI/VNB, VNII and VNIV) and four major clades of C. gattii (VGI, VGII, VGIII and VGIV). The sequence variation between VGI, VGIII and VGIV was similar to that between VNI/VNB and VNII. MATa was for the first time identified for VGIV. The VNIV and VGII clades are basal to the C. neoformans or the C. gattii clade, respectively. Divergence times among the seven haploid monophyletic lineages in the Cryptococcus species complex were estimated by applying the hypothesis of the molecular clock. The genetic variation found among all of these haploid monophyletic lineages indicates that they warrant varietal status. 相似文献
19.
Kerstin Voelz Hansong Ma Sujal Phadke Edmond J. Byrnes Pinkuan Zhu Olaf Mueller Rhys A. Farrer Daniel A. Henk Yonathan Lewit Yen-Ping Hsueh Matthew C. Fisher Alexander Idnurm Joseph Heitman Robin C. May 《PLoS genetics》2013,9(9)
Since 1999 a lineage of the pathogen Cryptococcus gattii has been infecting humans and other animals in Canada and the Pacific Northwest of the USA. It is now the largest outbreak of a life-threatening fungal infection in a healthy population in recorded history. The high virulence of outbreak strains is closely linked to the ability of the pathogen to undergo rapid mitochondrial tubularisation and proliferation following engulfment by host phagocytes. Most outbreaks spread by geographic expansion across suitable niches, but it is known that genetic re-assortment and hybridisation can also lead to rapid range and host expansion. In the context of C. gattii, however, the likelihood of virulence traits associated with the outbreak lineages spreading to other lineages via genetic exchange is currently unknown. Here we address this question by conducting outgroup crosses between distantly related C. gattii lineages (VGII and VGIII) and ingroup crosses between isolates from the same molecular type (VGII). Systematic phenotypic characterisation shows that virulence traits are transmitted to outgroups infrequently, but readily inherited during ingroup crosses. In addition, we observed higher levels of biparental (as opposed to uniparental) mitochondrial inheritance during VGII ingroup sexual mating in this species and provide evidence for mitochondrial recombination following mating. Taken together, our data suggest that hypervirulence can spread among the C. gattii lineages VGII and VGIII, potentially creating novel hypervirulent genotypes, and that current models of uniparental mitochondrial inheritance in the Cryptococcus genus may not be universal. 相似文献
20.
Unisexual reproduction is a novel homothallic sexual cycle recently discovered in both ascomycetous and basidiomycetous pathogenic fungi. It is a form of selfing that induces the yeast-to-hyphal dimorphic transition in isolates of the α mating type of the human fungal pathogen Cryptococcus neoformans. Unisexual reproduction may benefit the pathogen by facilitating sexual reproduction in the absence of the opposite a mating type and by generating infectious propagules called basidiospores. Here, we report an independent potential selective advantage of unisexual reproduction beyond genetic exchange and recombination. We competed a wild-type strain capable of undergoing unisexual reproduction with mutants defective in this developmental pathway and found that unisexual reproduction provides a considerable dispersal advantage through hyphal growth and sporulation. Our results show that unisexual reproduction may serve to facilitate access to both nutrients and potential mating partners and may provide a means to maintain the capacity for dimorphic transitions in the environment. 相似文献