首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1–geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1–geminin binding. Using this system, we found that coenzyme Q10 (CoQ10) can inhibit Cdt1–geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ10, having a longer isoprenoid chain, was the strongest inhibitor of Cdt1–geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 μM. Surface plasmon resonance analysis demonstrated that CoQ10 bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ10 had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ10 inhibits Cdt1–geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ10 was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ10 could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1–geminin binding. The application of inhibitors for the formation of Cdt1–geminin complex is discussed.  相似文献   

2.
3.
Geminin-Cdt1 balance is critical for genetic stability   总被引:7,自引:0,他引:7  
Saxena S  Dutta A 《Mutation research》2005,569(1-2):111-121
A cell limits its DNA replication activity to once per cell division cycle to maintain its genomic integrity. Studies in a variety of organisms are elucidating how these controls are exercised. Key amongst these is the regulation of replication initiator proteins such as Cdt1. Cdt1 is present in cells in G1 phase where it is required for initiation of replication. Once origins have fired, Cdt1 is either exported out of the nucleus or degraded, thereby preventing another round of replication. Higher eukaryotes have evolved another redundant mechanism, an inhibitor called geminin, to restrain Cdt1 activity. Studies in multiple organisms have shown that unregulated Cdt1 activity stimulates overreplication of the genome. Interestingly, the same seems to be true when geminin is depleted. The imbalance in the activities of these proteins causes the activation of key checkpoint proteins, the ATM/ATR kinases and the tumor suppressor, p53. This review proposes that a balance between Cdt1 and geminin is important for maintaining genomic stability.  相似文献   

4.
During late mitosis and early interphase, origins of replication become "licensed" for DNA replication by loading Mcm2-7 complexes. Mcm2-7 complexes are removed from origins as replication forks initiate replication, thus preventing rereplication of DNA in a single cell cycle. Premature origin licensing is prevented in metaphase by the action of geminin, which binds and inhibits Cdt1/RLF-B, a protein that is required for the loading of Mcm2-7. Recombinant geminin that is added to Xenopus egg extracts is efficiently degraded upon exit from metaphase. Here, we show that recombinant and endogenous forms of Xenopus geminin behave differently from one another, such that a significant proportion of endogenous geminin escapes proteolysis upon exit from metaphase. During late mitosis and early G1, the surviving population of endogenous geminin does not associate with Cdt1/RLF-B and does not inhibit licensing. Following nuclear assembly, geminin is imported into nuclei and becomes reactivated to bind Cdt1/RLF-B. This reactivated geminin provides the major nucleoplasmic inhibitor of origin relicensing during late interphase. Since the initiation of replication at licensed origins depends on nuclear assembly, our results suggest an elegant and novel mechanism for preventing rereplication of DNA in a single cell cycle.  相似文献   

5.
DNA replication is controlled by the stepwise assembly of a pre-replicative complex and the replication apparatus. Cdt1 is a novel component of the pre-replicative complex and plays a role in loading the minichromosome maintenance (MCM) 2-7 complex onto chromatin. Cdt1 activity is inhibited by geminin, which is essential for the G(2)/M transition in metazoan cells. To understand the molecular basis of the Cdt1-geminin regulatory mechanism in mammalian cells, we cloned and expressed the mouse Cdt1 homologue cDNA in bacterial cells and purified mouse Cdt1 to near homogeneity. We found by yeast two-hybrid analysis that mouse Cdt1 associates with geminin, MCM6, and origin recognition complex 2. MCM6 interacts with the Cdt1 carboxyl-terminal region (amino acids 407-477), which is conserved among eukaryotes, whereas geminin associates with the Cdt1 central region (amino acids 177-380), which is conserved only in metazoans. In addition, we found that Cdt1 can bind DNA in a sequence-, strand-, and conformation-independent manner. The Cdt1 DNA binding domain overlaps with the geminin binding domain, and the binding of Cdt1 to DNA is inhibited by geminin. Taken together, we have defined structural domains and novel biochemical properties for mouse Cdt1 that suggest that Cdt1 behaves as an intrinsic DNA binding factor in the pre-replicative complex.  相似文献   

6.
Cdt1 plays a key role in licensing DNA for replication. In the somatic cells of metazoans, both Cdt1 and its natural inhibitor geminin show reciprocal fluctuations in their protein levels owing to cell cycle-dependent proteolysis. Here, we show that the protein levels of Cdt1 and geminin are persistently high during the rapid cell cycles of the early Xenopus embryo. Immunoprecipitation of Cdt1 and geminin complexes, together with their cell cycle spatiotemporal dynamics, strongly supports the hypothesis that Cdt1 licensing activity is regulated by periodic interaction with geminin rather than its proteolysis. Overexpression of ectopic geminin slows down, but neither arrests early embryonic cell cycles nor affects endogenous geminin levels; apparent embryonic lethality is observed around 3-4 hours after mid-blastula transition. However, functional knockdown of geminin by ΔCdt1_193-447, which lacks licensing activity and degradation sequences, causes cell cycle arrest and DNA damage in affected cells. This contributes to subsequent developmental defects in treated embryos. Our results clearly show that rapidly proliferating early Xenopus embryonic cells are able to regulate replication licensing in the persistent presence of high levels of licensing proteins by relying on changing interactions between Cdt1 and geminin during the cell cycle, but not their degradation.  相似文献   

7.
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2–7 onto chromatin during late mitosis of the cell cycle. MCM2–7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G1 phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2–7 to facilitate the assembly of MCM2–7 onto chromatin at replication origins in late mitosis and G1 phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G1 phase cells. Thus, human And-1 facilitates loading of the MCM2–7 helicase onto chromatin during the assembly of pre-RC.  相似文献   

8.
Proper expression of the replication licensing factor Cdt1 is primarily regulated post-translationally by ubiquitylation and proteasome degradation. In a screen to identify novel non-histone targets of histone deacetylases (HDACs), we found Cdt1 as a binding partner for HDAC11. Cdt1 associates specifically and directly with HDAC11. We show that Cdt1 undergoes acetylation and is reversibly deacetylated by HDAC11. In vitro, Cdt1 can be acetylated at its N terminus by the lysine acetyltransferases KAT2B and KAT3B. Acetylation protects Cdt1 from ubiquitylation and subsequent proteasomal degradation. These results extend the list of non-histone acetylated proteins to include a critical DNA replication factor and provide an additional level of complexity to the regulation of Cdt1.To maintain genomic integrity, DNA replication must be tightly controlled to ensure that each portion of the genome replicates once and only once per cell cycle (reviewed in Ref. 1). Replication licensing begins by the formation of the prereplication complex at multiple potential origins of replication. This is established sequentially, with the origin recognition complex (ORC)2 proteins binding first, followed by the recruitment of Cdc6 and Cdt1, which in turn recruit the MCM2–7 proteins. MCM proteins act as the replicative helicase. The licensed replication origins are activated by cyclin-dependent kinases at the start of S phase. Licensing occurs throughout the cell cycle once S phase is complete.Cdt1 levels fluctuate throughout the cell cycle. It is destabilized at G1/S transition, and then levels begin to climb again upon S phase completion. To prevent licensing at inappropriate times, two separate processes regulate the inactivation or destruction of Cdt1. First, geminin negatively regulates Cdt1 function by prevention of the association of Cdt1 with MCM2–7 via steric hindrance (2). Interestingly, geminin also positively regulates Cdt1 by preventing its ubiquitylation, perhaps by prevention of its interaction with an E3 ligase. This allows Cdt1 to accumulate in G2 and M phases, to ensure adequate pools of Cdt1 to license the next cycle of replication (3). The ratio of geminin to Cdt1 likely determines whether geminin positively or negatively regulates Cdt1 (4). Second, Cdt1 is targeted for proteolysis by two distinct ubiquitin E3 ligases: the SCF-Skp2 complex and the DDB1-Cul4 complex (5). Phosphorylation by cyclin A/Cdk2 promotes interaction of Cdt1 with Skp2, leading to Cdt1 degradation during S phase (68). In addition, DDB1-Cul4 utilizes proliferating cell nuclear antigen as a binding platform to contact Cdt1, targeting the destruction of Cdt1 in S phase or following DNA damage (9, 10). Ubiquitylation by either of these E3 ligases promotes degradation of Cdt1 by the proteasome.Ubiquitylation occurs primarily (but not exclusively) on the ε-amino group of lysine residues. Another prominent post-translational modification that occurs on that residue is acetylation. Acetylation and, correspondingly, deacetylation can modulate the function and activity of a variety of proteins (see Ref. 11 for review). Here, we report that Cdt1 physically interacts with HDAC11, a class IV histone deacetylase (12, 13), as well as with several lysine acetyltransferases (KATs). We show that Cdt1 is an acetylated protein and further show that acetylation protects Cdt1 from ubiquitylation and subsequent proteasomal degradation. This study uncovers yet another layer of complexity to the regulation of the critical licensing factor Cdt1.  相似文献   

9.
Once-per-cell cycle replication is regulated through the assembly onto chromatin of multisubunit protein complexes that license DNA for a further round of replication. Licensing consists of the loading of the hexameric MCM2–7 complex onto chromatin during G1 phase and is dependent on the licensing factor Cdt1. In vitro experiments have suggested a two-step binding mode for minichromosome maintenance (MCM) proteins, with transient initial interactions converted to stable chromatin loading. Here, we assess MCM loading in live human cells using an in vivo licensing assay on the basis of fluorescence recovery after photobleaching of GFP-tagged MCM protein subunits through the cell cycle. We show that, in telophase, MCM2 and MCM4 maintain transient interactions with chromatin, exhibiting kinetics similar to Cdt1. These are converted to stable interactions from early G1 phase. The immobile fraction of MCM2 and MCM4 increases during G1 phase, suggestive of reiterative licensing. In late G1 phase, a large fraction of MCM proteins are loaded onto chromatin, with maximal licensing observed just prior to S phase onset. Fluorescence loss in photobleaching experiments show subnuclear concentrations of MCM-chromatin interactions that differ as G1 phase progresses and do not colocalize with sites of DNA synthesis in S phase.  相似文献   

10.
FBXO31 was originally identified as a putative tumor suppressor gene in breast, ovarian, hepatocellular, and prostate cancers. By screening a set of cell cycle-regulated proteins as potential FBXO31 interaction partners, we have now identified Cdt1 as a novel substrate. Cdt1 DNA replication licensing factor is part of the pre-replication complex and essential for the maintenance of genomic integrity. We show that FBXO31 specifically interacts with Cdt1 and regulates its abundance by ubiquitylation leading to subsequent degradation. We also show that Cdt1 regulation by FBXO31 is limited to the G2 phase of the cell cycle and is independent of the pathways previously described for Cdt1 proteolysis in S and G2 phase. FBXO31 targeting of Cdt1 is mediated through the N terminus of Cdt1, a region previously shown to be responsible for its cell cycle regulation. Finally, we show that Cdt1 stabilization due to FBXO31 depletion results in re-replication. Our data present an additional pathway that contributes to the FBXO31 function as a tumor suppressor.  相似文献   

11.
During late mitosis and early G1, replication origins are licensed for subsequent replication by loading heterohexamers of the mini-chromosome maintenance proteins (Mcm2-7). To prevent re-replication of DNA, the licensing system is down-regulated at other cell cycle stages. A small protein called geminin plays an important role in this down-regulation by binding and inhibiting the Cdt1 component of the licensing system. We examine here the organization of Xenopus Cdt1, delimiting regions of Cdt1 required for licensing and regions required for geminin interaction. The C-terminal 377 residues of Cdt1 are required for licensing and the extreme C-terminus contains a domain that interacts with an Mcm(2,4,6,7) complex. Two regions of Cdt1 interact with geminin: one at the N-terminus, and one in the centre of the protein. Only the central region binds geminin tightly enough to successfully compete with full-length Cdt1 for geminin binding. This interaction requires a predicted coiled-coil domain that is conserved amongst metazoan Cdt1 homologues. Geminin forms a homodimer, with each dimer binding one molecule of Cdt1. Separation of the domains necessary for licensing activity from domains required for a strong interaction with geminin generated a construct, whose licensing activity was partially insensitive to geminin inhibition.  相似文献   

12.
A human replication initiation protein Cdt1 is a very central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by directly binding to it. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example by geminin silencing with siRNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. In the present study, we first established a high throughput screening system based on modified ELISA (enzyme linked immunosorbent assay) to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we found that coenzyme Q(10) (CoQ(10)) can inhibit Cdt1-geminin interaction in vitro. CoQ compound is an isoprenoid quinine that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. CoQ(10), having a longer isoprenoid chain, was the strongest inhibitor of Cdt1-geminin binding in the tested CoQs, with 50% inhibition observed at concentrations of 16.2 muM. Surface plasmon resonance analysis demonstrated that CoQ(10) bound selectively to Cdt1, but did not interact with geminin. Moreover, CoQ(10) had no influence on the interaction between Cdt1 and mini-chromosome maintenance (MCM)4/6/7 complexes. These results suggested that CoQ(10) inhibits Cdt1-geminin complex formation by binding to Cdt1 and thereby could liberate Cdt1 from inhibition by geminin. Using three-dimensional computer modeling analysis, CoQ(10) was considered to interact with the geminin interaction interface on Cdt1, and was assumed to make hydrogen bonds with the residue of Arg243 of Cdt1. CoQ(10) could prevent the growth of human cancer cells, although only at high concentrations, and it remains unclear whether such an inhibitory effect is associated with the interference with Cdt1-geminin binding. The application of inhibitors for the formation of Cdt1-geminin complex is discussed.  相似文献   

13.
Summary Mesophyll cell nuclei isolated from leaves of Pennisetum purpureum were analysed by flow cytometry to determine the nuclear DNA content and the percentage of cells in different phases of the cell cycle. Samples taken from base, middle and tip regions of leaves 2 to 8 (leaf 1, which was adjacent to the meristem, was too small to sample) showed no significant differences in the amount of DNA per G1 nucleus due to either age or position. The average amount of DNA per G1 nucleus was 5.78 pg. Although the majority of cells for each sample were in G1, samples taken from older leaves had higher percentages of cells in G2 and S phases. More specifically, base and middle regions of older leaves had a higher percentage of cells in G2 than all three positions in younger leaves. Electrophoretic analysis of nuclear DNA from leaves 2 to 7 showed no evidence of degradation or difference in fragment size for any sample or position. This study was compared to previous work on the relationship between leaf age and embryogenic competence in Pennisetum purpureum. The results suggest that changes in the cell cycle, and/or a loss or fragmentation of the nuclear DNA, are not responsible for loss of embryogenic competence in mature leaf tissue.  相似文献   

14.
In eukaryotes, initiation of DNA replication requires the assembly of a multiprotein prereplicative complex (pre-RC) at the origins. We recently reported that a WD repeat-containing protein, origin recognition complex (ORC)-associated (ORCA/LRWD1), plays a crucial role in stabilizing ORC to chromatin. Here, we find that ORCA is required for the G(1)-to-S-phase transition in human cells. In addition to binding to ORC, ORCA associates with Cdt1 and its inhibitor, geminin. Single-molecule pulldown experiments demonstrate that each molecule of ORCA can bind to one molecule of ORC, one molecule of Cdt1, and two molecules of geminin. Further, ORCA directly interacts with the N terminus of Orc2, and the stability of ORCA is dependent on its association with Orc2. ORCA associates with Orc2 throughout the cell cycle, with Cdt1 during mitosis and G(1), and with geminin in post-G(1) cells. Overexpression of geminin results in the loss of interaction between ORCA and Cdt1, suggesting that increased levels of geminin in post-G(1) cells titrate Cdt1 away from ORCA. We propose that the dynamic association of ORCA with pre-RC components modulates the assembly of its interacting partners on chromatin and facilitates DNA replication initiation.  相似文献   

15.
In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs) at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC) and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks) and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1) functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2) replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.  相似文献   

16.
Geminin is believed to have a major function in the regulation of genome replication and cell proliferation. Published evidence shows that geminin specifically interacts with Cdt1 to block its function in the assembly of prereplication complexes. However, in proliferating HeLa cells geminin and Cdt1 are co-expressed during a relatively short time at the G(1)-to-S phase transition. Under these conditions, nearly all Cdt1 and a major part of geminin are bound to chromatin and reside at the same or closely adjacent sites as shown here by chromatin immunoprecipitation. Cdt1 is rapidly degraded early in S phase, but geminin remains bound to the chromatin sites. One function that chromatin-bound geminin could perform is to prevent access to Cdt1 that may escape S phase-dependent degradation or is synthesized in excess. Indeed, Cdt1 continues to be synthesized in HeLa cells in S phase but never accumulates because of the efficient degradation. Therefore, geminin can be eliminated by RNA interference without detectable effects on cell cycle parameters.  相似文献   

17.
Excess Cdt1 reportedly induces rereplication of chromatin in cultured cells and Xenopus egg extracts, suggesting that the regulation of Cdt1 activity by cell cycle-dependent proteolysis and expression of the Cdt1 inhibitor geminin is crucial for the inhibition of chromosomal overreplication between S phase and metaphase. We analyzed the consequences of excess Cdt1 for DNA replication and found that increased Cdt1 activity inhibited the elongation of nascent strands in Xenopus egg extracts. In Cdt1-supplemented extracts, overreplication was remarkably induced by the further addition of the Cdt1-binding domain of geminin (Gem79-130), which lacks licensing inhibitor activity. Further analyses indicated that fully active geminin, as well as Gem79-130, restored nascent strand elongation in Cdt1-supplemented extracts even after the Cdt1-induced stalling of replication fork elongation had been established. Our results demonstrate an unforeseen, negative role for Cdt1 in elongation and suggest that its function in the control of replication should be redefined. We propose a novel surveillance mechanism in which Cdt1 blocks nascent chain elongation after detecting illegitimate activation of the licensing system.  相似文献   

18.
DNA replication depends on a preceding licensing event by Cdt1 and Cdc6. In animal cells, relicensing after S phase but before mitosis is prevented by the Cdt1 inhibitor geminin and mitotic cyclin activity. Here, we show that geminin, like cyclin B1 and securin, is a bona fide target of the spindle checkpoint and APC/CCdc20. Cyclin B1 and geminin are degraded simultaneously during metaphase, which directs Cdt1 accumulation on segregating sister chromatids. Subsequent activation of APC/CCdh1 leads to degradation of Cdc6 well before Cdt1 becomes unstable in a replication-coupled manner. In mitosis, the spindle checkpoint supports Cdt1 accumulation, which promotes S phase onset. We conclude that the spindle checkpoint, APC/CCdc20, and APC/CCdh1 act successively to ensure that the disappearance of licensing inhibitors coincides exactly with a peak of Cdt1 and Cdc6. Whereas cell cycle entry from quiescence requires Cdc6 resynthesis, our results indicate that proliferating cells use a window of time in mitosis, before Cdc6 is degraded, as an earlier opportunity to direct S phase.  相似文献   

19.
Eukaryotic replication origins are 'licensed' for replication early in the cell cycle by loading Mcm(2-7) proteins. As chromatin replicates, Mcm(2-7) are removed, thus preventing the origin from firing again. Here we report the purification of the RLF-B component of the licensing system and show that it corresponds to Cdt1. RLF-B/Cdt1 was inhibited by geminin, a protein that is degraded during late mitosis. Immunodepletion of geminin from metaphase extracts allowed them to assemble licensed replication origins. Inhibition of CDKs in metaphase stimulated origin assembly only after the depletion of geminin. These experiments suggest that geminin-mediated inhibition of RLF-B/Cdt1 is essential for repressing origin assembly late in the cell cycle of higher eukaryotes.  相似文献   

20.
A human replication initiation protein, Cdt1, is a central player in the cell cycle regulation of DNA replication, and geminin down-regulates Cdt1 function by direct binding. It has been demonstrated that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance, for example, by geminin silencing with small interfering RNA, induces DNA re-replication and eventual cell death in some cancer-derived cell lines. We established a high throughput screening system based on a modified enzyme linked immunosorbent assay to identify compounds that interfere with human Cdt1-geminin binding. Using this system, we screened inhibitors from natural materials containing food components, and found that a glycolipid, sulfoquinovosyl diacylglycerol (SQDG), from spinach can inhibit Cdt1-geminin interaction in vitro, with 50% inhibition observed at concentrations of 1.79mug/ml. Other major glycolipids, such as monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) from spinach, had no influence. Surface plasmon resonance analysis demonstrated that SQDG bound selectively to Cdt1, but did not interact with geminin. Using three-dimensional computer modeling analysis, SQDG was considered to interact with the geminin interaction interface on Cdt1, and the sulfate group of SQDG was assumed to make hydrogen bonds with the residue of Arg346 of Cdt1. These data could help to further understanding of the structure and function of Cdt1. In addition, SQDG could be a clue to developing more appropriate inhibitors of Cdt1-geminin interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号