首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) infection is a significant global public health problem for which development of an effective prophylactic vaccine remains a high scientific priority. Many concepts for a vaccine are focused on induction of appropriate titers of broadly neutralizing antibodies (bNAbs) against the viral envelope (Env) glycoproteins gp120 and gp41, but no immunogen has yet accomplished this goal in animals or humans. One approach to induction of bNAbs is to design soluble, trimeric mimics of the native viral Env trimer. Here, we describe structural studies by negative-stain electron microscopy of several variants of soluble Env trimers based on the KNH1144 subtype A sequence. These Env trimers are fully cleaved between the gp120 and gp41 components and stabilized by specific amino acid substitutions. We also illustrate the structural consequences of deletion of the V1/V2 and V3 variable loops from gp120 and the membrane-proximal external region (MPER) from gp41. All of these variants adopt a trimeric configuration that appropriately mimics native Env spikes, including the CD4 receptor-binding site and the epitope for the VRC PG04 bNAb. These cleaved, soluble trimer designs can be adapted for use with multiple different env genes for both vaccine and structural studies.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) complex comprises three gp120 exterior glycoproteins each noncovalently linked to a gp41 transmembrane glycoprotein. Monomeric gp120 proteins can elicit antibodies capable of neutralizing atypically sensitive test viruses in vitro, but these antibodies are ineffective against representative primary isolates and the gp120 vaccines failed to provide protection against HIV-1 transmission in vivo. Alternative approaches to raising neutralizing antibodies are therefore being pursued. Here we report on the antibody responses generated in rabbits against a soluble, cleaved, trimeric form of HIV-1(JR-FL) Env. In this construct, the gp120 and gp41 moieties are covalently linked by an intermolecular disulfide bond (SOS gp140), and an I559P substitution has been added to stabilize gp41-gp41 interactions (SOSIP gp140). We investigated the value of DNA priming and compared the use of membrane-bound and soluble priming antigens and of repeat boosting with soluble and particulate protein antigen. Compared to monomeric gp120, SOSIP gp140 trimers elicited approximately threefold lower titers of anti-gp120 antibodies. Priming with DNA encoding a membrane-bound form of the SOS gp140 protein, followed by several immunizations with soluble SOSIP gp140 trimers, resulted in antibodies capable of neutralizing sensitive strains at high titers. A subset of these sera also neutralized, at lower titers, HIV-1(JR-FL) and some other primary isolates in pseudovirus and/or whole-virus assays. Neutralization of these viruses was immunoglobulin mediated and was predominantly caused by antibodies to gp120 epitopes, but not the V3 region.  相似文献   

4.
Peptide triazole (PT) antagonists interact with gp120 subunits of HIV‐1 Env trimers to block host cell receptor interactions, trigger gp120 shedding, irreversibly inactivate virus and inhibit infection. Despite these enticing functions, understanding the structural mechanism of PT‐Env trimer encounter has been limited. In this work, we combined competition interaction analysis and computational simulation to demonstrate PT binding to the recombinant soluble trimer, BG505 SOSIP.664, a stable variant that resembles native virus spikes in binding to CD4 receptor as well as known conformationally‐dependent Env antibodies. Binding specificity and computational modeling fit with encounter through complementary PT pharmacophore Ile‐triazolePro‐Trp interaction with a 2‐subsite cavity in the Env gp120 subunit of SOSIP trimer similar to that in monomeric gp120. These findings argue that PTs are able to recognize and bind a closed prefusion state of Env trimer upon HIV‐1 encounter. The results provide a structural model of how PTs exert their function on virion trimeric spike protein and a platform to inform future antagonist design. Proteins 2017; 85:843–851. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
The structure of BG505 gp140 SOSIP, a soluble mimic of the native HIV-1 envelope glycoprotein (Env), marks the beginning of new era in Env structure-based immunogen design. Displaying a well-ordered quaternary structure, these subtype A-derived trimers display an excellent antigenic profile, discriminating recognition by broadly neutralizing antibodies (bNAbs) from non-broadly neutralizing antibodies (non-bNAbs), and provide a solid Env-based immunogenic platform starting point. Even with this important advance, obtaining homogeneous well-ordered soluble SOSIP trimers derived from other subtypes remains challenging. Here, we report the “rescue” of homogeneous well-ordered subtype B and C SOSIP trimers from a heterogeneous Env mixture using CD4 binding site-directed (CD4bs) non-bNAbs in a negative-selection purification process. These non-bNAbs recognize the primary receptor CD4bs only on disordered trimers but not on the native Env spike or well-ordered soluble trimers due to steric hindrance. Following negative selection to remove disordered oligomers, we demonstrated recovery of well-ordered, homogeneous trimers by electron microscopy (EM). We obtained 3D EM reconstructions of unliganded trimers, as well as in complex with sCD4, a panel of CD4bs-directed bNAbs, and the cleavage-dependent, trimer-specific bNAb, PGT151. Using bio-layer light interferometry (BLI) we demonstrated that the well-ordered trimers were efficiently recognized by bNAbs and poorly recognized by non-bNAbs, representing soluble mimics of the native viral spike. Biophysical characterization was consistent with the thermostability of a homogeneous species that could be further stabilized by specific bNAbs. This study revealed that Env trimers generate different frequencies of well-ordered versus disordered aberrant trimers even when they are genetically identical. By negatively selecting the native-like well-ordered trimers, we establish a new means to obtain soluble Env mimetics derived from subtypes B and C for expanded use as candidate vaccine immunogens.  相似文献   

6.
We isolated HIV-1 Envelope (Env)-specific memory B cells from a cow that had developed high titer polyclonal immunoglobulin G (IgG) with broad neutralizing activity after a long duration vaccination with HIV-1AD8 Env gp140 trimers. We cloned the bovine IgG matched heavy (H) and light (L) chain variable (V) genes from these memory B cells and constructed IgG monoclonal antibodies (mAbs) with either a human constant (C)-region/bovine V-region chimeric or fully bovine C and V regions. Among 42 selected Ig+ memory B cells, two mAbs (6A and 8C) showed high affinity binding to gp140 Env. Characterization of both the fully bovine and human chimeric isoforms of these two mAbs revealed them as highly type-specific and capable of binding only to soluble AD8 uncleaved gp140 trimers and covalently stabilized AD8 SOSIP gp140 cleaved trimers, but not monomeric gp120. Genomic sequence analysis of the V genes showed the third heavy complementarity-determining region (CDRH3) of 6A mAb was 21 amino acids in length while 8C CDRH3 was 14 amino acids long. The entire V heavy (VH) region was 27% and 25% diverged for 6A and 8C, respectively, from the best matched germline V genes available, and the CDRH3 regions of 6A and 8C were 47.62% and 78.57% somatically mutated, respectively, suggesting a high level of somatic hypermutation compared with CDRH3 of other species. Alanine mutagenesis of the VH genes of 6A and 8C, showed that CDRH3 cysteine and tryptophan amino acids were crucial for antigen binding. Therefore, these bovine vaccine-induced anti-HIV antibodies shared some of the notable structural features of elite human broadly neutralizing antibodies, such as CDRH3 size and somatic mutation during affinity-maturation. However, while the 6A and 8C mAbs inhibited soluble CD4 binding to gp140 Env, they did not recapitulate the neutralizing activity of the polyclonal antibodies against HIV infection.  相似文献   

7.
Glycoprotein Env of human immunodeficiency virus type 1 (HIV-1) mediates viral entry through membrane fusion. Composed of gp120 and gp41 subunits arranged as a trimer-of-heterodimers, Env adopts a metastable, highly dynamic conformation on the virion surface. This structural plasticity limits the temporospatial exposure of many highly conserved, neutralizing epitopes, contributing to the difficulty in developing effective HIV-1 vaccines. Here, we employed antibody neutralization of HIV-1 infectivity to investigate how inter- and intra-gp120 interactions mediated by variable loops V1/V2 and V3 at the Env apex regulate accessibility of the gp41 membrane-proximal external region (MPER) at the Env base. Swapping the V3 loop from EnvSF162 into the EnvHXB2 background shifted MPER exposure from the prefusogenic state to a functional intermediate conformation that was distinct from the prehairpin-intermediate state sensitive to gp41-targeted fusion inhibitors. The V3-loop swap had a profound impact on global protein dynamics, biasing the equilibrium to a closed conformation resistant to most anti-gp120 antibodies, stabilizing the protein to both cold- and soluble CD4-induced Env inactivation, and increasing the CD4 requirements for viral entry. Further dissection of the EnvHXB2 V3 loop revealed that residue 306 uniquely modulated epitope exposure and trimer stability. The R306S substitution substantially decreased sensitivity to antibodies targeting the gp41 MPER and, surprisingly, the gp120 V3-loop crown (residues 312–315), but had only modest effects on exposure of intervening gp120 epitopes. Furthermore, the point mutation reduced soluble CD4-induced inactivation, but had no impact on cold inactivation. The residue appeared to exert its effects by electrostatically modifying the strength of intra-subunit interactions between the V1/V2 and V3 loops. The distinct patterns of neutralization and stability pointed to a novel prefusogenic Env conformation along the receptor activation pathway and suggested that apical Env-regulation of gp41 MPER exposure can be decoupled from much of the dynamics of gp120 subunits.  相似文献   

8.
The trimeric envelope (Env) spike is the focus of vaccine design efforts aimed at generating broadly neutralizing antibodies (bNAbs) to protect against HIV-1 infection. Three recent developments have facilitated a thorough investigation of the antigenic structure of the Env trimer: 1) the isolation of many bNAbs against multiple different epitopes; 2) the generation of a soluble trimer mimic, BG505 SOSIP.664 gp140, that expresses most bNAb epitopes; 3) facile binding assays involving the oriented immobilization of tagged trimers. Using these tools, we generated an antigenic map of the trimer by antibody cross-competition. Our analysis delineates three well-defined epitope clusters (CD4 binding site, quaternary V1V2 and Asn332-centered oligomannose patch) and new epitopes at the gp120-gp41 interface. It also identifies the relationships among these clusters. In addition to epitope overlap, we defined three more ways in which antibodies can cross-compete: steric competition from binding to proximal but non-overlapping epitopes (e.g., PGT151 inhibition of 8ANC195 binding); allosteric inhibition (e.g., PGT145 inhibition of 1NC9, 8ANC195, PGT151 and CD4 binding); and competition by reorientation of glycans (e.g., PGT135 inhibition of CD4bs bNAbs, and CD4bs bNAb inhibition of 8ANC195). We further demonstrate that bNAb binding can be complex, often affecting several other areas of the trimer surface beyond the epitope. This extensive analysis of the antigenic structure and the epitope interrelationships of the Env trimer should aid in design of both bNAb-based therapies and vaccines intended to induce bNAbs.  相似文献   

9.
HIV-1 variants that show unusual sensitivity to autologous antibodies due to presence of critical neutralization signatures would likely contribute towards rational envelope based HIV-1 vaccine design. In the present study, we found that presence of a naturally occurring H681 in gp41 membrane proximal external region (MPER) of a clade C envelope (Env) obtained from a recently infected Indian patient conferred increased sensitivity to autologous and heterologous plasma antibodies. Furthermore, Env-pseudotyped viruses expressing H681 showed increased sensitivity to soluble CD4, b12 and 4E10 monoclonal antibodies both in related and unrelated Envs and was corroborated with increased Env susceptibility and binding to cellular CD4 as well as with prolonged exposure of MPER epitopes. The increased gp120-CD4 interaction was further associated with relative exposure of CD4-induced epitopes and macrophage infectivity. In summary, our data indicate that Y681H substitution exposes neutralizing epitopes in CD4bs and MPER towards comprehensive interference in HIV-1 entry.  相似文献   

10.
The envelope glycoproteins (Env) are the focus of HIV-1 vaccine development strategies based on the induction of humoral immunity, but the mechanisms the virus has evolved to limit the induction and binding of neutralizing antibodies (NAbs) constitute substantial obstacles. Conserved neutralization epitopes are shielded by variable regions and carbohydrates, so one strategy to increase their exposure and, it is hoped, their immunogenicity is to delete the overlying variable loops. However, deleting the variable regions from Env trimers can be problematic, because hydrophobic patches that are normally solvent-inaccessible now become exposed, causing protein misfolding or aggregation, for example. Here, we describe the construction and characterization of recombinant gp140 trimers lacking variable domains 1 and 2 (ΔV1V2). The design of the trimers was guided by HIV-1 evolution studies that identified compensatory changes in V1V2-deleted but functional Env proteins (Bontjer, I., Land, A., Eggink, D., Verkade, E., Tuin, K., Baldwin, C., Pollakis, G., Paxton, W. A., Braakman, I., Berkhout, B., and Sanders, R. W. (2009) J. Virol. 83, 368–383). We now show that specific compensatory changes improved the function of ΔV1V2 Env proteins and hence HIV-1 replication. The changes acted by reducing the exposure of a hydrophobic surface either by replacing a hydrophobic residue with a hydrophilic one or by covering the surface with a glycan. The compensatory changes allowed the efficient expression of well folded, soluble gp140 trimers derived from various HIV-1 isolates. The evolved ΔV1V2 Env viruses were extremely sensitive to NAbs, indicating that neutralization epitopes are well exposed, which was confirmed by studies of NAb binding to the soluble ΔV1V2 gp140 trimers. These evolved ΔV1V2 trimers could be useful reagents for immunogenicity and structural studies.  相似文献   

11.
Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.  相似文献   

12.
The envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) is composed of two noncovalently associated subunits: an extracellular subunit (gp120) and a transmembrane subunit (gp41). The functional unit of Env on the surface of infectious virions is a trimer of gp120/gp41 heterodimers. Env is the target of anti-HIV neutralizing antibodies. A considerable effort has been invested in the engineering of recombinant soluble forms of the virion-associated Env trimer as vaccine candidates to elicit anti-HIV neutralizing antibody responses. These soluble constructs contain three gp120 subunits and the extracellular segments of the corresponding gp41 subunits. The individual gp120/gp41 protomers on these soluble trimers are identical in amino acid sequence (homotrimers). Here, we engineered novel soluble trimeric gp140 proteins that are formed by the association of gp140 protomers that differ in amino acid sequence and glycosylation patterns (heterotrimers). Specifically, we engineered soluble heterotrimeric proteins composed of clade A and clade B Env protomers. The clade A gp140 protomers were derived from viruses isolated during acute infection (Q168a2, Q259d2.17, and Q461e2), whereas the clade B gp140 protomers were derived from a virus isolated during chronic infection (SF162). The amino acid sequence divergence between the clade A and the clade B Envs is approximately 24%. Neutralization epitopes in the CD4 binding sites and coreceptor binding sites, as well as the membrane-proximal external region (MPER), were differentially expressed on the heterotrimeric and homotrimeric proteins. The heterotrimeric gp140s elicited broader anti-tier 1 isolate neutralizing antibody responses than did the homotrimeric gp140s.  相似文献   

13.
The envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41 subunits) are associated by relatively weak, noncovalent interactions. The induction of neutralizing antibodies after vaccination with individual Env subunits has proven very difficult, probably because they are inadequate mimics of the native complex. Our hypothesis is that a stable form of the Env complex, perhaps with additional modifications to rationally alter its antigenic structure, may be a better immunogen than the individual subunits. A soluble form of Env, SOS gp140, can be made that has gp120 stably linked to the gp41 ectodomain by an intermolecular disulfide bond. This protein is fully cleaved at the proteolysis site between gp120 and gp41. However, the gp41-gp41 interactions in SOS gp140 are too weak to maintain the protein in a trimeric configuration. Consequently, purified SOS gp140 is a monomer (N. Schülke, M. S. Vesanen, R. W. Sanders, P. Zhu, D. J. Anselma, A. R. Villa, P. W. H. I. Parren, J. M. Binley, K. H. Roux, P. J. Maddon, J. P. Moore, and W. C. Olson, J. Virol. 76:7760-7776, 2002). Here we describe modifications of SOS gp140 that increase its trimer stability. A variant SOS gp140, designated SOSIP gp140, contains an isoleucine-to-proline substitution at position 559 in the N-terminal heptad repeat region of gp41. This protein is fully cleaved, has favorable antigenic properties, and is predominantly trimeric. SOSIP gp140 trimers are noncovalently associated and can be partially purified by gel filtration chromatography. These gp140 trimers are dissociated into monomers by anionic detergents or heat but are relatively resistant to nonionic detergents, high salt concentrations, or exposure to a mildly acidic pH. SOSIP gp140 should be a useful reagent for structural and immunogenicity studies.  相似文献   

14.
Trimeric HIV-1 envelope glycoproteins (Env) are now being evaluated instead of monomeric gp120 as vaccine antigens because they mimic more closely the spikes expressed on the surface of virions. Thus, it can be argued that trimers have a more native structure than gp120, so might be superior at raising neutralizing antibodies. One approach to making Env trimers is to ensure that they are cleaved at the gp120-gp41 border, but stabilized by other, engineered substitutions such as intra-subunit disulfide bonds (SOS and SOSIP gp140 proteins). However, the production of properly folded, cleaved trimers is complicated by the requirement for co-expression of the exogenous protease furin, to facilitate the efficient processing oft the gp120-gp41 cleavage site. Also, yields of purified trimeric SOSIP gp140 proteins are usually moderate and for scale-up procedures the cost of transfection reagents becomes an important economical factor. Here, we assess the optimal culture conditions for the transient expression of these complex proteins. We found that the use of linear polyethylenimine 25 kDa (PEI25k) as a transfection aid was a cost-efficient, economical alternative to several commercially available products. By using PEI25k and an optimized plasmid:furin ratio, we could express proteolytically mature, trimeric Env vaccine antigens at levels high enough for use in immunization or structural studies. We also show that the same transfection method can be used to generate infectious pseudoviruses.  相似文献   

15.
The envelope proteins (Env) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) form homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained, but is less stable, after cleavage in a Golgi compartment and transport to the surface of infected cells. Functional, virion-associated HIV-1 and SIV Env have an almost exclusively trimeric structure. In addition, a soluble form of SIV Env (gp140) forms a nearly homogeneous population of trimers. Here, we describe the oligomeric structure of soluble, uncleaved HIV-1 gp140 and modifications that promote a stable trimeric structure. Biochemical and biophysical analyses, including sedimentation equilibrium and scanning transmission electron microscopy, revealed that unmodified HIV-1 gp140 purified as a heterogeneous range of oligomeric species, including dimers and aggregates. Deletion of the V2 domain alone or, especially, both the V1 and V2 domains reduced dimer formation but promoted aggregation rather than trimerization. Expressing gp140 with mannose-only oligosaccharides did not eliminate heterogeneity. Replacement of the entire gp41 segment of HIV-1 gp140 or just the N-terminal half (85 amino acids) of this segment with the corresponding region of SIV was sufficient to confer efficient trimerization for gp140 derived from clade B and C isolates. Importantly, the relatively small segment of the HIV Env replaced by SIV sequences contains no known targets of neutralizing antibody. The soluble trimeric form of HIV-1 Env should prove useful for assessment of antigenic structure and immunogenicity.  相似文献   

16.
The HIV-1 gp41 envelope (Env) membrane proximal external region (MPER) is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor) antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native) conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL), or weakly bound (CON-S), 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, mediates binding to the viral receptors and, along with the transmembrane glycoprotein gp41, is a major target for neutralizing antibodies. We asked whether replacing the gp41 fusion/trimerization domain with a stable trimerization motif might lead to a more stable gp120 trimer that would be amenable to structural and immunologic analysis. To obtain stable gp120 trimers, a heterologous trimerization motif, GCN4, was appended to the C terminus of YU2gp120. Biochemical analysis indicated that the gp120-GCN4 trimers were superior to gp140 molecules in their initial homogeneity, and trilobed structures were observable by electron microscopy. Biophysical analysis of gp120-GCN4 trimers by isothermal titration calorimetry (ITC) and ultracentrifugation analyses indicated that most likely two molecules of soluble CD4 could bind to one gp120-GCN4 trimer. To further examine restricted CD4 stoichiometric binding to the gp120-GCN4 trimers, we generated a low-affinity CD4 binding trimer by introducing a D457V change in the CD4 binding site of each gp120 monomeric subunit. The mutant trimers could definitively bind only one soluble CD4 molecule, as determined by ITC and sedimentation equilibrium centrifugation. These data indicate that there are weak interactions between the gp120 monomeric subunits of the GCN4-stabilized trimers that can be detected by low-affinity ligand sensing. By similar analysis, we also determined that removal of the variable loops V1, V2, and V3 in the context of the gp120-GCN4 proteins allowed the binding of three CD4 molecules per trimer. Interestingly, both the gp120-GCN4 variants displayed a restricted stoichiometry for the CD4-induced antibody 17b of one antibody molecule binding per trimer. This restriction was not evident upon removal of the variable loops V1 and V2 loops, consistent with conformational constraints in the wild-type gp120 trimers and similar to those inherent in the functional Env spike. Thus, the gp120-GCN4 trimers demonstrate several properties that are consistent with some of those anticipated for gp120 in the context of the viral spike.  相似文献   

18.
HIV-1 gp120 binds the primary receptor CD4. Recently, a plethora of broadly neutralizing antibodies to the gp120 CD4-binding site (CD4bs) validated this region as a target for immunogen design. Here, we asked if modified HIV-1 envelope glycoproteins (Env) designed to increase CD4 recognition might improve recognition by CD4bs neutralizing antibodies and more efficiently elicit such reactivities. We also asked if CD4bs stabilization, coupled with altering the Env format (monomer to trimer or cross-clade), might better elicit neutralizing antibodies by focusing the immune response on the functionally conserved CD4bs. We produced monomeric and trimeric Envs stabilized by mutations within the gp120 CD4bs cavity (pocket-filling; PF2) or by appending heterologous trimerization motifs to soluble Env ectodomains (gp120/gp140). Recombinant glycoproteins were purified to relative homogeneity, and ligand binding properties were analyzed by ELISA, surface plasmon resonance, and isothermal titration microcalorimetry. In some formats, the PF2 substitutions increased CD4 affinity, and importantly, PF2-containing proteins were better recognized by the broadly neutralizing CD4bs mAbs, VRC01 and VRC-PG04. Based on this analysis, we immunized selected Env variants into rabbits using heterologous or homologous regimens. Analysis of the sera revealed that homologous inoculation of the PF2-containing, variable region-deleted YU2 gp120 trimers (ΔV123/PF2-GCN4) more rapidly elicited CD4bs-directed neutralizing antibodies compared with other regimens, whereas homologous trimers elicited increased neutralization potency, mapping predominantly to the gp120 third major variable region (V3). These results suggest that some engineered Env proteins may more efficiently direct responses toward the conserved CD4bs and be valuable to elicit antibodies of greater neutralizing capacity.  相似文献   

19.
HIV-1 envelope (Env) glycoprotein is a trimer of heterodimer of gp120 and gp41, and derives from a trimeric glycoprotein precursor, gp160. Gp120 contains five conserved regions that are interspersed with 5 variable loop regions (V1–V5). Env variations in variable loop length and amino acid composition may associate with virus pathogenesis, virus sensitivity to neutralizing antibodies (nAbs) and disease progression. To investigate the role of each variable loop in Env function, we generated a panel of JRFL gp160 loop deletion mutants and examined the effects of each loop deletion on Env expression, Env cell surface display and Env-mediated virus entry into permissive cells. We found that deletion of V1 and V2 (ΔV1V2), or loop D (ΔlpD) abolished virus entry, the same effect as deletion of V3 (ΔV3), while deletion of V3 crown (ΔV3C) significantly enhanced virus assembly and entry. We further found that deletion of V4 (ΔV4) or V5 (ΔV5), or replacement of V4 or V5 with flexible linkers of the same lengths knocked out the receptor and coreceptor binding sites in gp120, but significantly enhanced the exposure of the N-trimer structure and the membrane proximal external region (MPER) in gp41. Although deletion of V4 or V5 did not affect Env expression, they negatively affected Env cell surface display, leading to the failure in virus assembly and subsequent entry. Taken together, we found that Env variable loops were indispensable for Env structural integrity and virus entry. Our findings may have implications for development of HIV-1 vaccine immunogens and therapeutics.  相似文献   

20.
A component to the problem of inducing broad neutralizing HIV-1 gp41 membrane proximal external region (MPER) antibodies is the need to focus the antibody response to the transiently exposed MPER pre-hairpin intermediate neutralization epitope. Here we describe a HIV-1 envelope (Env) gp140 oligomer prime followed by MPER peptide-liposomes boost strategy for eliciting serum antibody responses in rhesus macaques that bind to a gp41 fusion intermediate protein. This Env-liposome immunization strategy induced antibodies to the 2F5 neutralizing epitope 664DKW residues, and these antibodies preferentially bound to a gp41 fusion intermediate construct as well as to MPER scaffolds stabilized in the 2F5-bound conformation. However, no serum lipid binding activity was observed nor was serum neutralizing activity for HIV-1 pseudoviruses present. Nonetheless, the Env-liposome prime-boost immunization strategy induced antibodies that recognized a gp41 fusion intermediate protein and was successful in focusing the antibody response to the desired epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号