首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zeng GQ  Zhang PF  Deng X  Yu FL  Li C  Xu Y  Yi H  Li MY  Hu R  Zuo JH  Li XH  Wan XX  Qu JQ  He QY  Li JH  Ye X  Chen Y  Li JY  Xiao ZQ 《Molecular & cellular proteomics : MCP》2012,11(6):M111.013946
To discover novel biomarkers for early detection of human lung squamous cell cancer (LSCC) and explore possible mechanisms of LSCC carcinogenesis, iTRAQ-tagging combined with two dimensional liquid chromatography tandem MS analysis was used to identify differentially expressed proteins in human bronchial epithelial carcinogenic process using laser capture microdissection-purified normal bronchial epithelium (NBE), squamous metaplasia (SM), atypical hyperplasia (AH), carcinoma in situ (CIS) and invasive LSCC. As a result, 102 differentially expressed proteins were identified, and three differential proteins (GSTP1, HSPB1 and CKB) showing progressively expressional changes in the carcinogenic process were selectively validated by Western blotting. Immunohistochemistry was performed to detect the expression of the three proteins in an independent set of paraffin-embedded archival specimens including various stage tissues of bronchial epithelial carcinogenesis, and their ability for early detection of LSCC was evaluated by receiver operating characteristic analysis. The results showed that the combination of the three proteins could perfectly discriminate NBE from preneoplastic lesions (SM, AH and CIS) from invasive LSCC, achieving a sensitivity of 96% and a specificity of 92% in discriminating NBE from preneoplatic lesions, a sensitivity of 100% and a specificity of 98% in discriminating NBE from invasive LSCC, and a sensitivity of 92% and a specificity of 91% in discriminating preneoplastic lesions from invasive LSCC, respectively. Furthermore, we knocked down GSTP1 in immortalized human bronchial epithelial cell line 16HBE cells, and then measured their susceptibility to carcinogen benzo(a)pyrene-induced cell transformation. The results showed that GSTP1 knockdown significantly increased the efficiency of benzo(a)pyrene-induced 16HBE cell transformation. The present data first time show that GSTP1, HSPB1 and CKB are novel potential biomarkers for early detection of LSCC, and GSTP1 down-regulation is involved in human bronchial epithelial carcinogenesis.  相似文献   

2.
为分析支气管上皮癌变进程中的差异表达蛋白质,筛选肺鳞癌早期诊断标志物,以人支气管上皮癌变各阶段组织为研究对象,先采用激光捕获显微切割技术(LCM) 纯化人正常支气管上皮组织、鳞状化生、不典型增生、原位癌、浸润性肺鳞癌组织,再用同位素标记相对和绝对定量 (iTRAQ) 技术结合二维液相色谱串联质谱(2D LC-MS/MS)鉴定支气管上皮癌变进程中各阶段的差异表达蛋白质。结果共鉴定了1036个蛋白质,筛选出102个与人支气管上皮癌变相关的差异蛋白质,在这些差异蛋白质中,有的在支气管上皮癌变过程中进行性上调,有的在支气管上皮癌变过程中进行性下调,有的呈阶段特异性改变;功能分析表明,这些差异蛋白质涉及代谢、细胞凋亡、增殖、分化、信号传导、转录、翻译、细胞粘附、免疫反应与发育等。Western blotting 及免疫组织化学技术验证了其中 2个差异蛋白(S100A9和 CKB) 的表达,证实了定量蛋白质组学结果的可靠性。研究结果提示:这些差异表达蛋白质与支气管上皮癌变相关,并可成为肺鳞癌的早期诊断标志物,进一步研究差异蛋白的生物学功能,将有助于阐明支气管上皮的癌变机制,从而为肺鳞癌的早期诊断与发病机制研究提供新思路。  相似文献   

3.

Background

Human rhinoviruses (RV), the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro.

Methods

Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA) by flow cytometry.

Results

RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation.

Conclusion

RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.  相似文献   

4.

Objectives

Previous reports suggest a strong association between human papillomavirus (HPV) and the etiology of laryngeal squamous cell carcinoma (LSCC). However, clinical data regarding the HPV infection rate among LSCC patients remain largely inconsistent.

Methods

In total, 674 LSCC patients from three major hospitals in Shanghai were enrolled in this study. We determined the patients'' HPV infection status using immunohistochemistry and the GenoArray HPV genotyping assay and calculated their long-term survival rate using the Kaplan-Meier method.

Results

The total P16-positive rate according to immunostaining results was 7.57% (51/674). None of the P16-negative patients were HPV-positive according to the HPV genotyping test. The rate of HPV infection among patients with LSCC was 4.9% (33/674). HPV infection was more common among nonsmokers (P<0.05), nondrinkers (P<0.05), and patients with supraglottic LSCC (P<0.05). Of the 33 HPV-positive patients, 28 (84.8%) were infected with HPV-16, 2 with HPV-18, 1 with HPV-31, 1 with HPV-33 and 1 with HPV-45. The 3-year overall survival rate and progression-free survival rate were higher in HPV-positive than HPV-negative patients, but the difference was not statistically significant (76.3% vs. 70.7%, P = 0.30 and 65.1% vs. 58.3%, P = 0.37, respectively).

Conclusion

HPV was not a main causal factor in LSCC carcinogenesis in this Chinese population. HPV infection did not alter patients'' overall survival or progression-free survival rates in this study.  相似文献   

5.
6.

Background

Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β.

Methods

BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests.

Results

Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition.

Conclusion

Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.  相似文献   

7.

Background

Normal airway epithelial barrier function is maintained by cell-cell contacts which require the translocation of adhesion proteins at the cell surface, through membrane vesicle trafficking and fusion events. Myoferlin and dysferlin, members of the multiple-C2-domain Ferlin superfamily, have been implicated in membrane fusion processes through the induction of membrane curvature. The objectives of this study were to examine the expression of dysferlin and myoferlin within the human airway and determine the roles of these proteins in airway epithelial homeostasis.

Methods

The expression of dysferlin and myoferlin were evaluated in normal human airway sections by immunohistochemistry, and primary human airway epithelial cells and fibroblasts by immuno blot. Localization of dysferlin and myoferlin in epithelial cells were determined using confocal microscopy. Functional outcomes analyzed included cell adhesion, protein expression, and cell detachment following dysferlin and myoferlin siRNA knock-down, using the human bronchial epithelial cell line, 16HBE.

Results

Primary human airway epithelial cells express both dysferlin and myoferlin whereas fibroblasts isolated from bronchi and the parenchyma only express myoferlin. Expression of dysferlin and myoferlin was further localized within the Golgi, cell cytoplasm and plasma membrane of 16HBE cells using confocal micrscopy. Treatment of 16HBE cells with myoferlin siRNA, but not dysferlin siRNA, resulted in a rounded cell morphology and loss of cell adhesion. This cell shedding following myoferlin knockdown was associated with decreased expression of tight junction molecule, zonula occludens-1 (ZO-1) and increased number of cells positive for apoptotic markers Annexin V and propidium iodide. Cell shedding was not associated with release of the innate inflammatory cytokines IL-6 and IL-8.

Conclusions/Significance

This study demonstrates the heterogeneous expression of myoferlin within epithelial cells and fibroblasts of the respiratory airway. The effect of myoferlin on the expression of ZO-1 in airway epithelial cells indicates its role in membrane fusion events that regulate cell detachment and apoptosis within the airway epithelium.  相似文献   

8.

Introduction

Differentiated paediatric epithelial cells can be used to study the role of epithelial cells in asthma. Nasal epithelial cells are easier to obtain and may act as a surrogate for bronchial epithelium in asthma studies. We assessed the suitability of nasal epithelium from asthmatic children to be a surrogate for bronchial epithelium using air-liquid interface cultures.

Methods

Paired nasal and bronchial epithelial cells from asthmatic children (n = 9) were differentiated for 28 days under unstimulated and IL-13-stimulated conditions. Morphological and physiological markers were analysed using immunocytochemistry, transepithelial-electrical-resistance, Quantitative Real-time-PCR, ELISA and multiplex cytokine/chemokine analysis.

Results

Physiologically, nasal epithelial cells from asthmatic children exhibit similar cytokine responses to stimulation with IL-13 compared with paired bronchial epithelial cells. Morphologically however, nasal epithelial cells differed significantly from bronchial epithelial cells from asthmatic patients under unstimulated and IL-13-stimulated conditions. Nasal epithelial cells exhibited lower proliferation/differentiation rates and lower percentages of goblet and ciliated cells when unstimulated, while exhibiting a diminished and varied response to IL-13.

Conclusions

We conclude that morphologically, nasal epithelial cells would not be a suitable surrogate due to a significantly lower rate of proliferation and differentiation of goblet and ciliated cells. Physiologically, nasal epithelial cells respond similarly to exogenous stimulation with IL-13 in cytokine production and could be used as a physiological surrogate in the event that bronchial epithelial cells are not available.  相似文献   

9.

Rationale and Objective

Sirtuin 1 (SIRT1) plays an important role in tumorigenesis and is increased in many human tumors. DBC1 is a negative regulator of SIRT1 via promotion of p53-mediated apoptosis. It is necessary to investigate the expression of SIRT1 and DBC1 in laryngeal and hypopharyngeal squamous cell carcinomas (LSCC and HSCC) and its correlation with available clinical parameters.

Methods

The mRNA levels of SIRT1 and DBC1 were measured in 54 paired LSCC or HSCC tumors and corresponding adjacent noncancerous mucosae using quantitative RT-PCR (qRT-PCR). The protein levels of SIRT1 and DBC1 were also evaluated in 120 cases of patients with LSCC or HSCC using immunohistochemical staining. The correlation between SIRT1 and DBC1 expression and clinical parameters was analyzed with Pearson chi-square test.

Results

qRT-PCR assay showed that, compared with the paired adjacent noncancerous mucosae, SIRT1 mRNA was significantly decreased in tumors. The immunohistochemical results indicated that the SIRT1 protein was also downregulated in tumors compared with noncancerous mucosae. Moreover, decreased SIRT1 was significantly correlated with the tumor clinical stage and lymph node metastasis. Additionally, DBC1 mRNA was significantly increased in tumors compared with noncancerous mucosae. The immunohistochemical results indicated that the DBC1 protein was downregulated in tumors, which is inconsistent with the results obtained by qRT-PCR. Finally, decreased DBC1 protein was significantly correlated with tumor differentiation, lymph node metastasis, and p53 expression.

Conclusions

SIRT1 and DBC1 might be involved in the pathophysiology of laryngeal and hypopharyngeal squamous cell carcinomas and are associated with lymph node metastasis and p53 positive staining in LSCCs and HSCCs.  相似文献   

10.
TR Liu  LH Xu  AK Yang  Q Zhong  M Song  MZ Li  LJ Hu  FJ Chen  ZD Hu  P Han  MS Zeng 《PloS one》2012,7(7):e40704

Background

To investigate the expression and role of special AT-rich sequence-binding protein-2 (SATB2) in laryngeal squamous cell carcinoma (LSCC) tissue and cell line (HEp2), and to evaluate the clinical and prognostic significance of SATB2 protein in patients with LSCC.

Methods

The expression of SATB2 was examined in LSCC tissue and HEp2 cells by Western-blotting, Real-time PCR and immunohistochemical staining. Cell growth curve assay and colony formation assay were used to verify the effect of SATB2 on the proliferation and tumor progression ability of HEp2 cells. Tumor formation assay in nude mice was used to analyze the effect of SATB2 on the tumorigenicity of HEp2 cells.

Results

The status of SATB2 protein in carcinoma tissues is much lower than that in paracarcinoma tissues. The overall survival of the patients with high SATB2 expression was significantly higher than the low SATB2 expression group. Lower or negative SATB2 expression was significantly correlated with advanced clinical staging, histological grade and tumor recurrence. In vitro experiments demonstrated that over-expression of SATB2 in HEp2 cells inhibited cell proliferation and tumor progression ability, and down-regulation of SATB2 showed the opposite effects. Over-expression of SATB2 repressed the tumorigenicity of HEp2 cells by in vivo experiments. Moreover, multivariate analysis suggested that SATB2 expression might be an independent prognostic indicator for the survival of LSCC patients after curative surgery.

Conclusions

SATB2 might involve in the development and progression of LSCC as a tumor suppressor, and thereby may be a valuable prognostic marker for LSCC patients.  相似文献   

11.

Aims

Fascin-1, ezrin and paxillin, cytoskeleton-associated proteins, have been implicated in several human cancers, but their role in laryngeal squamous cell carcinoma (LSCC) is unknown. We investigated the association of their expression and clinicopathologic factors and their prognostic value in LSCC.

Materials and Methods

Quantitative RT-PCR and western blot analyses were used to examine mRNA and protein levels in 10 fresh LSCC specimens and 10 corresponding adjacent normal margin (ANM) tissues from patients undergoing surgery in 2012. We used immunohistochemistry to retrospectively study 216 paraffin blocks of LSCC samples from patients (193 men) who had undergone surgery between 2000 and 2006 and had not received special treatment before the diagnosis. Univariate analysis of patient survival involved the Kaplan–Meier method. Multivariate analyses involved the Cox proportional hazards model.

Results

The relative mRNA and protein levels of fascin-1, ezrin and paxillin were significantly greater in LSCC than ANM tissue (P<0.05). The high expression of fascin-1, ezrin or paxillin was positively correlated with poor tumor differentiation, cervical lymph node metastasis (N+), and advanced clinical stage (III+IV) (P<0.05) but not sex or metastasis. In addition, a high expression of fascin-1 (P = 0.007) or ezrin (P = 0.047) was associated with advanced tumor stage (T3+T4). The expression of fascin-1 was higher in smokers than non-smokers (P = 0.019). A high expression of fascin-1, ezrin or paxillin was associated with poor prognosis.

Conclusions

Fascin-1, ezrin and paxillin may be prognostic of poor outcome with LSCC after surgery. Our study may lead to establishing new molecular therapeutic targets and/or prognostic biomarkers in LSCC.  相似文献   

12.

Background

Alpha-1 antitrypsin is the main inhibitor of neutrophil elastase in the lung. Although it is principally synthesized by hepatocytes, alpha-1 antitrypsin is also secreted by bronchial epithelial cells. Gene mutations can lead to alpha-1 antitrypsin deficiency, with the Z variant being the most clinically relevant due to its propensity to polymerize. The ability of bronchial epithelial cells to produce Z-variant protein and its polymers is unknown.We investigated the expression, accumulation, and secretion of Z-alpha-1 antitrypsin and its polymers in cultures of transfected cells and in cells originating from alpha-1 antitrypsin-deficient patients.

Methods

Experiments using a conformation-specific antibody were carried out on M- and Z-variant–transfected 16HBE cells and on bronchial biopsies and ex vivo bronchial epithelial cells from Z and M homozygous patients. In addition, the effect of an inflammatory stimulus on Z-variant polymer formation, elicited by Oncostatin M, was investigated. Comparisons of groups were performed using t-test or ANOVA. Non-normally distributed data were assessed by Mann–Whitney U test or the Kruskal-Wallis test, where appropriate. A P value of < 0.05 was considered to be significant.

Results

Alpha-1 antitrypsin polymers were found at a higher concentration in the culture medium of ex vivo bronchial epithelial cells from Z-variant homozygotes, compared with M-variant homozygotes (P < 0.01), and detected in the bronchial epithelial cells and submucosa of patient biopsies. Oncostatin M significantly increased the expression of alpha-1 antitrypsin mRNA and protein (P < 0.05), and the presence of Z-variant polymers in ex vivo cells (P < 0.01).

Conclusions

Polymers of Z-alpha-1 antitrypsin form in bronchial epithelial cells, suggesting that these cells may be involved in the pathogenesis of lung emphysema and in bronchial epithelial cell dysfunction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0112-3) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma.

Methods

We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging.

Results

We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402.

Discussion

In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium.  相似文献   

14.

Background

Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis.

Methods

We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls.

Results

We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1.

Conclusion

The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.  相似文献   

15.

Background

Early-life infection by respiratory syncytial virus (RSV) is associated with aberrant expression of the prototypical neurotrophin nerve growth factor (NGF) and its cognate receptors in human bronchial epithelium. However, the chain of events leading to this outcome, and its functional implications for the progression of the viral infection, has not been elucidated. This study sought to test the hypothesis that RSV infection modulates neurotrophic pathways in human airways by silencing the expression of specific microRNAs (miRNAs), and that this effect favors viral growth by interfering with programmed death of infected cells.

Methodology

Human bronchial epithelial cells infected with green fluorescent protein-expressing RSV (rgRSV) were screened with multiplex qPCR arrays, and miRNAs significantly affected by the virus were analyzed for homology with mRNAs encoding neurotrophic factors or receptors. Mimic sequences of selected miRNAs were transfected into non-infected bronchial cells to confirm the role of each of them in regulating neurotrophins expression at the gene and protein level, and to study their influence on cell cycle and viral replication.

Principal Findings

RSV caused downregulation of 24 miRNAs and upregulation of 2 (p<0.01). Homology analysis of microarray data revealed that 6 of those miRNAs exhibited a high degree of complementarity to NGF and/or one of its cognate receptors TrKA and p75NTR. Among the selected miRNAs, miR-221 was significantly downregulated by RSV and its transfection in bronchial epithelial cells maximally inhibited gene and protein expression of NGF and TrKA, increased apoptotic cell death, and reduced viral replication and infectivity.

Conclusions/Significance

Our data suggest that RSV upregulates the NGF-TrKA axis in human airways by silencing miR-221 expression, and this favors viral replication by interfering with the apoptotic death of infected cells. Consequently, the targeted delivery of exogenous miRNAs to the airways may provide a new strategy for future antiviral therapies based on RNA interference.  相似文献   

16.

Background

Laminins are a group of proteins largely responsible for the anchorage of cells to basement membranes. We hypothesized that altered Laminin chain production in the bronchial mucosa might explain the phenomenon of epithelial cell shedding in asthma. The aim was to characterize the presence of Laminin chains in the SEBM and epithelium in allergic and non-allergic asthmatics.

Patients and methods

Biopsies were taken from the bronchi of 11 patients with allergic and 9 patients with non-allergic asthma and from 7 controls and stained with antibodies against the Laminin (ln) chains alpha1-alpha5, beta1-beta2 and gamma1-gamma2.

Results

Lns-2,-5 and -10 were the main Laminins of SEBM. The layer of ln-10 was thicker in the two asthmatic groups while an increased thickness of lns-2 and -5 was only seen in allergic asthmatics. The ln gamma2-chain, which is only found in ln 5, was exclusively expressed in epithelial cells in association with epithelial injury and in the columnar epithelium of allergic asthmatics.

Conclusion

The uncoordinated production of chains of ln-5 in allergic asthma could have a bearing on the poor epithelial cell anchorage in these patients.  相似文献   

17.

Background

Human lung mast cells (HLMCs) infiltrate the airway epithelium and airway smooth muscle (ASM) in asthmatic airways. The mechanism of HLMC adhesion to both cell types is only partly defined, and adhesion is not inhibited by function-blocking anti-Kit and anti-stem cell factor (SCF) antibodies. Our aim was to identify adhesion molecules expressed by human mast cells that mediate adhesion to human ASM cells (HASMCs) and human airway epithelial cells.

Methods

We used phage-display to isolate single chain Fv (scFv) antibodies with adhesion-blocking properties from rabbits immunised with HLMC and HMC-1 membrane proteins.

Results

Post-immune rabbit serum labelled HLMCs in flow cytometry and inhibited their adhesion to human BEAS-2B epithelial cells. Mast cell-specific scFvs were identified which labelled mast cells but not Jurkat cells by flow cytometry. Of these, one scFv (A1) consistently inhibited mast cell adhesion to HASMCs and BEAS-2B epithelial cells by about 30 %. A1 immunoprecipitated Kit (CD117) from HMC-1 lysates and bound to a human Kit-expressing mouse mast cell line, but did not interfere with SCF-dependent Kit signalling.

Conclusion

Kit contributes to human mast cell adhesion to human airway epithelial cells and HASMCs, but may utilise a previously unidentified adhesion domain that lies outside the SCF binding site. Targeting this adhesion pathway might offer a novel approach for the inhibition of mast cell interactions with structural airway cells, without detrimental effects on Kit signalling in other tissues.  相似文献   

18.
19.

Background

Stanniocalcin-1 (STC1) and stanniocalcin-2 (STC2) are secreted glycoprotein hormones involved in various types of human malignancies. The roles of STC1 and STC2 in laryngeal squamous cell carcinoma (LSCC) remain unknown. We investigated correlations between STC1 and STC2 expression and clinicopathological or prognostic factors in LSCC.

Methods

Pre-surgical peripheral blood samples were collected between 2012 and 2013 from 62 patients with LSCC. Quantitative RT-PCR analysis was performed to examine mRNA levels of STC1 and STC2. Immunohistochemistry was performed to retrospectively analyze 90 paraffin-embedded LSCC tissue samples, which were obtained from patients who received surgery between 2006 and 2009. These patients did not have histories of treatment or malignancies. Univariate analysis of patient survival was performed by the Kaplan–Meier method. Multivariate analyses were performed with the Cox proportional hazards model.

Results

The relative mRNA levels of STC1 and STC2 in peripheral blood were significantly greater in LSCC patients than those of healthy volunteers (both P<0.05). STC2 protein expression in tumor tissues was associated with invasion into the thyroid cartilage, T-Stage, lymphatic metastasis, clinical stage, and pathological differentiation (all P<0.05). In addition, STC2 protein expression was an independent prognostic factor for overall survival in patients with LSCC (P = 0.025). In contrast, STC1 expression only correlated with clinical stage (P = 0.026) and was not an independent or significant prognostic factor.

Conclusions

Circulating STC1 and STC2 mRNA are potentially useful blood markers for LSCC. Our results strongly suggest that the STC2 protein, but not STC1, may be a valuable biomarker for LSCC malignancies and a prognostic marker for poor outcome following surgery. Future studies should examine STC2 as a novel molecular target for the treatment of LSCC.  相似文献   

20.

Background

Fatal human respiratory disease associated with influenza A subtype H5N1 has been documented in Hong Kong, and more recently in Vietnam, Thailand and Cambodia. We previously demonstrated that patients with H5N1 disease had unusually high serum levels of IP-10 (interferon-gamma-inducible protein-10). Furthermore, when compared with human influenza virus subtype H1N1, the H5N1 viruses in 1997 (A/Hong Kong/483/97) (H5N1/97) were more potent inducers of pro-inflammatory cytokines (e.g. tumor necrosis factor-a) and chemokines (e.g. IP-10) from primary human macrophages in vitro, which suggests that cytokines dysregulation may play a role in pathogenesis of H5N1 disease. Since respiratory epithelial cells are the primary target cell for replication of influenza viruses, it is pertinent to investigate the cytokine induction profile of H5N1 viruses in these cells.

Methods

We used quantitative RT-PCR and ELISA to compare the profile of cytokine and chemokine gene expression induced by H5N1 viruses A/HK/483/97 (H5N1/97), A/Vietnam/1194/04 and A/Vietnam/3046/04 (both H5N1/04) with that of human H1N1 virus in human primary alveolar and bronchial epithelial cells in vitro.

Results

We demonstrated that in comparison to human H1N1 viruses, H5N1/97 and H5N1/04 viruses were more potent inducers of IP-10, interferon beta, RANTES (regulated on activation, normal T cell expressed and secreted) and interleukin 6 (IL-6) in primary human alveolar and bronchial epithelial cells in vitro. Recent H5N1 viruses from Vietnam (H5N1/04) appeared to be even more potent at inducing IP-10 than H5N1/97 virus.

Conclusion

The H5N1/97 and H5N1/04 subtype influenza A viruses are more potent inducers of proinflammatory cytokines and chemokines in primary human respiratory epithelial cells than subtype H1N1 virus. We suggest that this hyper-induction of cytokines may be relevant to the pathogenesis of human H5N1 disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号