首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigallocatechin-3-gallate (EGCG), a dietary polyphenol (flavanol) from green tea, possesses leishmanicidal and antitrypanosomal activity. Mitochondrial damage was observed in Leishmania treated with EGCG, and it contributed to the lethal effect. However, the molecular target has not been defined. In this study, EGCG, (+)-catechin and (−)-epicatechin were tested against recombinant arginase from Leishmania amazonensis (ARG-L) and rat liver arginase (ARG-1). The compounds inhibit ARG-L and ARG-1 but are more active against the parasite enzyme. Enzyme kinetics reveal that EGCG is a mixed inhibitor of the ARG-L while (+)-catechin and (−)-epicatechin are competitive inhibitors. The most potent arginase inhibitor is (+)-catechin (IC50 = 0.8 µM) followed by (−)-epicatechin (IC50 = 1.8 µM), gallic acid (IC50 = 2.2 µM) and EGCG (IC50 = 3.8 µM). Docking analyses showed different modes of interaction of the compounds with the active sites of ARG-L and ARG-1. Due to the low IC50 values obtained for ARG-L, flavanols can be used as a supplement for leishmaniasis treatment.  相似文献   

2.

Background

Apamin sensitive potassium current (I KAS), carried by the type 2 small conductance Ca2+-activated potassium (SK2) channels, plays an important role in post-shock action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (VF) in failing ventricles.

Objective

To test the hypothesis that amiodarone inhibits I KAS in human embryonic kidney 293 (HEK-293) cells.

Methods

We used the patch-clamp technique to study I KAS in HEK-293 cells transiently expressing human SK2 before and after amiodarone administration.

Results

Amiodarone inhibited IKAS in a dose-dependent manner (IC50, 2.67±0.25 µM with 1 µM intrapipette Ca2+). Maximal inhibition was observed with 50 µM amiodarone which inhibited 85.6±3.1% of IKAS induced with 1 µM intrapipette Ca2+ (n = 3). IKAS inhibition by amiodarone was not voltage-dependent, but was Ca2+-dependent: 30 µM amiodarone inhibited 81.5±1.9% of I KAS induced with 1 µM Ca2+ (n = 4), and 16.4±4.9% with 250 nM Ca2+ (n = 5). Desethylamiodarone, a major metabolite of amiodarone, also exerts voltage-independent but Ca2+ dependent inhibition of I KAS.

Conclusion

Both amiodarone and desethylamiodarone inhibit I KAS at therapeutic concentrations. The inhibition is independent of time and voltage, but is dependent on the intracellular Ca2+ concentration. SK2 current inhibition may in part underlie amiodarone''s effects in preventing electrical storm in failing ventricles.  相似文献   

3.
Different 2,4-thiazolidinedione-tethered coumarins 5a–b, 10a–n and 11a–d were synthesised and evaluated for their inhibitory action against the cancer-associated hCAs IX and XII, as well as the physiologically dominant hCAs I and II to explore their selectivity. Un-substituted phenyl-bearing coumarins 10a, 10 h, and 2-thienyl/furyl-bearing coumarins 11a–c exhibited the best hCA IX (KIs between 0.48 and 0.93 µM) and hCA XII (KIs between 0.44 and 1.1 µM) inhibitory actions. Interestingly, none of the coumarins had any inhibitory effect on the off-target hCA I and II isoforms. The sub-micromolar compounds from the biochemical assay, coumarins 10a, 10 h and 11a–c, were assessed in an in vitro antiproliferative assay, and then the most potent antiproliferative agent 11a was tested to explore its impact on the cell cycle phases and apoptosis in MCF-7 breast cancer cells to provide more insights into the anticancer activity of these compounds.  相似文献   

4.

Background

Giardia duodenalis is a widespread intestinal protozoan of both humans and mammals. To date, few epidemiological studies have assessed the potential and importance of zoonotic transmission; and the human giardiasis burden attributable to G. duodenalis of animal origin is unclear. No information about occurrence and genotyping data of sheep and goat giardiasis is available in China. The aim of the present study was to determine prevalence and distribution of G. duodenalis in sheep and goats in Heilongjiang Province, China, and to characterize G. duodenalis isolates and assess the possibility of zoonotic transmission.

Methodology/Principal Findings

A total of 678 fecal specimens were collected from sheep and goats on six farms ranging in age from one month to four years in Heilongjiang Province, China. The average prevalence of G. duodenalis infection was 5.0% (34/678) by microscopy after Lugol''s iodine staining, with 5.6% (30/539) for the sheep versus 2.9% (4/139) for the goats. Molecular analysis was conducted on 34 G. duodenalis isolates based on the triosephosphate isomerase (tpi) gene. 29 tpi gene sequences were successfully obtained and identified as assemblages A (n = 4), B (n = 2) and E (n = 23). High heterogeneity was observed within assemblage E at the tpi locus, with five novel subtypes found out of seven subtypes. Two subtypes of assemblage A were detected, including subtype AI (n = 3) and a novel subtype (designated as subtype AIV) (n = 1). Two assemblage B isolates were identical to each other in the tpi gene sequences.

Conclusions/Significance

This is the first report of G. duodenalis infections in sheep and goats in China. The present data revealed the unique endemicity on prevalence, distribution and genetic characterization of G. duodenalis in sheep and goats in Heilongjiang Province. The findings of assemblages A and B in sheep and goats implied the potential of zoonotic transmission.  相似文献   

5.
Synthetic and natural polymers are often used as drug delivery systems in vitro and in vivo. Biodegradable chitosan of different sizes were used to encapsulate antitumor drug tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox). The interactions of tamoxifen and its metabolites with chitosan 15, 100 and 200 KD were investigated in aqueous solution, using FTIR, fluorescence spectroscopic methods and molecular modeling. The structural analysis showed that tamoxifen and its metabolites bind chitosan via both hydrophilic and hydrophobic contacts with overall binding constants of K tam-ch-15  = 8.7 (±0.5)×103 M−1, K tam-ch-100  = 5.9 (±0.4)×105 M−1, K tam-ch-200  = 2.4 (±0.4)×105 M−1 and K hydroxytam-ch-15  = 2.6(±0.3)×104 M−1, K hydroxytam – ch-100  = 5.2 (±0.7)×106 M−1 and K hydroxytam-ch-200  = 5.1 (±0.5)×105 M−1, K endox-ch-15  = 4.1 (±0.4)×103 M−1, K endox-ch-100  = 1.2 (±0.3)×106 M−1 and K endox-ch-200  = 4.7 (±0.5)×105 M−1 with the number of drug molecules bound per chitosan (n) 2.8 to 0.5. The order of binding is ch-100>200>15 KD with stronger complexes formed with 4-hydroxytamoxifen than tamoxifen and endoxifen. The molecular modeling showed the participation of polymer charged NH2 residues with drug OH and NH2 groups in the drug-polymer adducts. The free binding energies of −3.46 kcal/mol for tamoxifen, −3.54 kcal/mol for 4-hydroxytamoxifen and −3.47 kcal/mol for endoxifen were estimated for these drug-polymer complexes. The results show chitosan 100 KD is stronger carrier for drug delivery than chitosan-15 and chitosan-200 KD.  相似文献   

6.

Background

Naturally occurring coinfections of pathogens have been reported in salmonids, but their consequences on disease resistance are unclear. We hypothesized that 1) coinfection of Caligus rogercresseyi reduces the resistance of Atlantic salmon to Piscirickettsia salmonis; and 2) coinfection resistance is a heritable trait that does not correlate with resistance to a single infection.

Methodology

In total, 1,634 pedigreed Atlantic salmon were exposed to a single infection (SI) of P. salmonis (primary pathogen) or coinfection with C. rogercresseyi (secondary pathogen). Low and high level of coinfection were evaluated (LC = 44 copepodites per fish; HC = 88 copepodites per fish). Survival and quantitative genetic analyses were performed to determine the resistance to the single infection and coinfections.

Main Findings

C. rogercresseyi significantly increased the mortality in fish infected with P. salmonis (SI mortality = 251/545; LC mortality = 544/544 and HC mortality = 545/545). Heritability estimates for resistance to P. salmonis were similar and of medium magnitude in all treatments (h 2 SI = 0.23±0.07; h 2 LC = 0.17±0.08; h 2 HC = 0.24±0.07). A large and significant genetic correlation with regard to resistance was observed between coinfection treatments (rg LC-HC = 0.99±0.01) but not between the single and coinfection treatments (rg SI-LC = −0.14±0.33; rg SI-HC = 0.32±0.34).

Conclusions/Significance

C. rogercresseyi, as a secondary pathogen, reduces the resistance of Atlantic salmon to the pathogen P. salmonis. Resistance to coinfection of Piscirickettsia salmonis and Caligus rogercresseyi in Atlantic salmon is a heritable trait. The absence of a genetic correlation between resistance to a single infection and resistance to coinfection indicates that different genes control these processes. Coinfection of different pathogens and resistance to coinfection needs to be considered in future research on salmon farming, selective breeding and conservation.  相似文献   

7.
KARRIKIN INSENSITIVE 2 (KAI2) is an α/β hydrolase involved in seed germination and seedling development. It is essential for plant responses to karrikins, a class of butenolide compounds derived from burnt plant material that are structurally similar to strigolactone plant hormones. The mechanistic basis for the function of KAI2 in plant development remains unclear. We have determined the crystal structure of Arabidopsis thaliana KAI2 in space groups P21 21 21 (a  = 63.57 Å, b  = 66.26 Å, c  = 78.25 Å) and P21 (a  = 50.20 Å, b  = 56.04 Å, c  = 52.43 Å, β  = 116.12°) to 1.55 and 2.11 Å respectively. The catalytic residues are positioned within a large hydrophobic pocket similar to that of DAD2, a protein required for strigolactone response in Petunia hybrida. KAI2 possesses a second solvent-accessible pocket, adjacent to the active site cavity, which offers the possibility of allosteric regulation. The structure of KAI2 is consistent with its designation as a serine hydrolase, as well as previous data implicating the protein in karrikin and strigolactone signalling.  相似文献   

8.
The mevalonate-based isoprenoid biosynthetic pathway is responsible for producing cholesterol in humans and is used commercially to produce drugs, chemicals, and fuels. Heterologous expression of this pathway in Escherichia coli has enabled high-level production of the antimalarial drug artemisinin and the proposed biofuel bisabolane. Understanding the kinetics of the enzymes in the biosynthetic pathway is critical to optimize the pathway for high flux. We have characterized the kinetic parameters of phosphomevalonate kinase (PMK, EC 2.7.4.2) from Saccharomyces cerevisiae, a previously unstudied enzyme. An E. coli codon-optimized version of the S. cerevisiae gene was cloned into pET-52b+, then the C-terminal 6X His-tagged protein was expressed in E. coli BL21(DE3) and purified on a Ni2+ column. The KM of the ATP binding site was determined to be 98.3 µM at 30°C, the optimal growth temperature for S. cerevisiae, and 74.3 µM at 37°C, the optimal growth temperature for E. coli. The KM of the mevalonate-5-phosphate binding site was determined to be 885 µM at 30°C and 880 µM at 37°C. The Vmax was determined to be 4.51 µmol/min/mg enzyme at 30°C and 5.33 µmol/min/mg enzyme at 37°C. PMK is Mg2+ dependent, with maximal activity achieved at concentrations of 10 mM or greater. Maximum activity was observed at pH = 7.2. PMK was not found to be substrate inhibited, nor feedback inhibited by FPP at concentrations up to 10 µM FPP.  相似文献   

9.
Within the globin superfamily, protoglobins (Pgb) belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb), since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies) to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb*) are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II)) is biphasic and values of the second-order rate constant for the reduction of NO2 to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II) (Ma-Pgb*-Fe(II)-NO) are k app1 = 9.6±0.2 M–1 s–1 and k app2 = 1.2±0.1 M–1 s–1 (at pH 7.4 and 20°C). The k app1 and k app2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III)) is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III) and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are h app = 3.8×104 M–1 s–1 and h 0 = 2.8×10–1 s–1 (at pH 7.4 and 20°C). The pH-dependence of h on and h 0 values reflects the acid-base equilibrium of peroxynitrite (pK a = 6.7 and 6.9, respectively; at 20°C), indicating that HOONO is the species that reacts preferentially with the heme-Fe(III) atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species.  相似文献   

10.
Aptamers are nucleic acids developed by in vitro evolution techniques that bind to specific ligands with high affinity and selectivity. Despite such high affinity and selectivity, however, in vitro evolution does not necessarily reveal the minimum structure of the nucleic acid required for selective ligand binding. Here, we show that a 35mer RNA aptamer for the cofactor flavin mononucleotide (FMN) identified by in vitro evolution can be computationally evolved to a mere 14mer structure containing the original binding pocket and eight scaffolding nucleotides while maintaining its ability to bind in vitro selectively to FMN. Using experimental and computational methodologies, we found that the 14mer binds with higher affinity to FMN (KD ~ 4 µM) than to flavin adenine dinucleotide (KD ~ 12 µM) or to riboflavin (KD ~ 13 µM),despite the negative charge of FMN. Different hydrogen-bond strengths resulting from differing ring-system electron densities associated with the aliphatic-chain charges appear to contribute to the selectivity observed for the binding of the 14mer to FMN and riboflavin. Our results suggest that high affinity and selectivity in ligand binding is not restricted to large RNAs, but can also be a property of extraordinarily short RNAs.  相似文献   

11.

Background

With widespread resistance to antimonials in Visceral Leishmaniasis (VL) in the Indian subcontinent, Miltefosine (MIL) has been introduced as the first line therapy. Surveillance of MIL susceptibility in natural populations of Leishmania donovani is vital to preserve it and support the VL elimination program.

Methodology and Principal Findings

We measured in vitro susceptibility towards MIL and paromomycin (PMM) in L. donovani isolated from VL and PKDL, pre- and post-treatment cases, using an amastigote-macrophage model. MIL susceptibility of post-treatment isolates from cured VL cases (n = 13, mean IC50±SD = 2.43±1.44 µM), was comparable (p>0.05) whereas that from relapses (n = 3, mean IC50 = 4.72±1.99 µM) was significantly higher (p = 0.04) to that of the pre-treatment group (n = 6, mean IC50 = 1.86±0.75 µM). In PKDL, post-treatment isolates (n = 3, mean IC50 = 16.13±2.64 µM) exhibited significantly lower susceptibility (p = 0.03) than pre-treatment isolates (n = 5, mean IC50 = 8.63±0.94 µM). Overall, PKDL isolates (n = 8, mean IC50 = 11.45±4.19 µM) exhibited significantly higher tolerance (p<0.0001) to MIL than VL isolates (n = 22, mean IC50 = 2.58±1.58 µM). Point mutations in the miltefosine transporter (LdMT) and its beta subunit (LdRos3) genes previously reported in parasites with experimentally induced MIL resistance were not present in the clinical isolates. Further, the mRNA expression profile of these genes was comparable in the pre- and post-treatment isolates. Parasite isolates from VL and PKDL cases were uniformly susceptible to PMM with respective mean IC50 = 7.05±2.24 µM and 6.18±1.51 µM.

Conclusion

The in vitro susceptibility of VL isolates remained unchanged at the end of MIL treatment; however, isolates from relapsed VL and PKDL cases had lower susceptibility than the pre-treatment isolates. PKDL isolates were more tolerant towards MIL in comparison with VL isolates. All parasite isolates were uniformly susceptible to PMM. Mutations in the LdMT and LdRos3 genes as well as changes in the expression of these genes previously correlated with experimental resistance to MIL could not be verified for the field isolates.  相似文献   

12.
Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155 and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 3′end-processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 3′end-processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant activities using an uncleaved substrate. With 3′end-processing assay, IC50 were 0.4 µM, 0.9 µM (FC = 2.25) and 1.2 µM (FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay. In concerted integration, integrases were less sensitive to RAL than in ST or 3′P but mutants were more resistant to RAL than WT.  相似文献   

13.

Background

Nor-BNI, GNTI and JDTic induce selective κ opioid antagonism that is delayed and extremely prolonged, but some other effects are of rapid onset and brief duration. The transient effects of these compounds differ, suggesting that some of them may be mediated by other targets.

Results

In binding assays, the three antagonists showed no detectable affinity (K i≥10 µM) for most non-opioid receptors and transporters (26 of 43 tested). There was no non-opioid target for which all three compounds shared detectable affinity, or for which any two shared sub-micromolar affinity. All three compounds showed low nanomolar affinity for κ opioid receptors, with moderate selectivity over μ and δ (3 to 44-fold). Nor-BNI bound weakly to the α2C-adrenoceptor (K i = 630 nM). GNTI enhanced calcium mobilization by noradrenaline at the α1A-adrenoceptor (EC50 = 41 nM), but did not activate the receptor, displace radioligands, or enhance PI hydrolysis. This suggests that it is a functionally-selective allosteric enhancer. GNTI was also a weak M1 receptor antagonist (K B = 3.7 µM). JDTic bound to the noradrenaline transporter (K i = 54 nM), but only weakly inhibited transport (IC50 = 1.1 µM). JDTic also bound to the opioid-like receptor NOP (K i = 12 nM), but gave little antagonism even at 30 µM. All three compounds exhibited rapid permeation and active efflux across Caco-2 cell monolayers.

Conclusions

Across 43 non-opioid CNS targets, only GNTI exhibited a potent functional effect (allosteric enhancement of α1A-adrenoceptors). This may contribute to GNTI''s severe transient effects. Plasma concentrations of nor-BNI and GNTI may be high enough to affect some peripheral non-opioid targets. Nonetheless, κ opioid antagonism persists for weeks or months after these transient effects dissipate. With an adequate pre-administration interval, our results therefore strengthen the evidence that nor-BNI, GNTI and JDTic are highly selective κ opioid antagonists.  相似文献   

14.
A bioactive ingredient in an ethanol extract from the branch bark of cultivated mulberry Husang-32 (Morus multicaulis Perr.) was isolated using a macroporous resin column. The primary component, which was purified by semi-preparative high-performance liquid chromatography diode array detection (HPLC-DAD), was identified as mulberroside A (MA) by liquid chromatograph-mass spectrometer (LC-MS), 1H and 13C nuclear magnetic resonance (NMR) spectra. In total, 4.12 g MA was efficiently extracted from one kilogram of mulberry bark. The enzymatic analysis showed that MA inhibited the generation of dopachrome by affecting the activities of monophenolase and diphenolase of tyrosinase in vitro. This analysis indicated that MA and oxyresveratrol (OR), which is the the aglycone of mulberroside A, exhibited strong inhibition of the monophenolase activity with IC50 values of 1.29 µmol/L and 0.12 µmol/L, respectively. However, the former showed weaker inhibitory activity than the latter for diphenolase. For the monophenolase activity, the inhibitory activity of MA and OR was reversible and showed mixed type 1 inhibition. Additionally, the inhibition constant KI (the inhibition constant of the effectors on tyrosinase) values were 0.385 µmol/L and 0.926 µmol/L, respectively, and the KIS (the inhibition constants of the enzyme-substrate complex) values were 0.177 µmol/L and 0.662 µmol/L, respectively. However, MA showed competitive inhibition of diphenolase activity, and KI was 4.36 µmol/L. In contrast, OR showed noncompetitive inhibition and KI = KIS = 2.95 µmol/L. Taken together, these results provide important information concerning the inhibitory mechanism of MA on melanin synthesis, which is widely used in whitening cosmetics.  相似文献   

15.
Two DCM mutants (E40K and E54K) of tropomyosin (Tm) were examined using the thin-filament extraction/reconstitu­tion technique. The effects of the Ca2+, ATP, phos­phate (Pi), and ADP concentrations on isometric tension and its transients were studied at 25°C, and the results were com­pared to those for the WT protein. Our results indicate that both E40K and E54K have a significantly lower T HC (high Ca2+ ten­sion at pCa 4.66) (E40K: 1.21±0.06 T a, ±SEM, N = 34; E54K: 1.24±0.07 T a, N = 28), a significantly lower T LC (low- Ca2+ tension at pCa 7.0) (E40K: 0.07±0.02 T a, N = 34; E54K: 0.06±0.02 T a, N = 28), and a significantly lower T act (Ca2+ activatable tension) (T act = T HC–TLC, E40K: 1.15±0.08 T a, N = 34; E54K: 1.18±0.06 T a, N = 28) than WT (T HC = 1.53±0.07 T a, T LC = 0.12±0.01 T a, T act = 1.40±0.07 T a, N = 25). All tensions were normalized to T a ( = 13.9±0.8 kPa, N = 57), the ten­sion of actin-filament reconstituted cardiac fibers (myocardium) under the standard activating conditions. The Ca2+ sensitivity (pCa50) of E40K (5.23±0.02, N = 34) and E54K (5.24±0.03, N = 28) was similar to that of the WT protein (5.26±0.03, N = 25). The cooper­a­tivity increased significantly in E54K (3.73±0.25, N = 28) compared to WT (2.80±0.17, N = 25). Seven kinetic constants were deduced using sinusoidal analysis at pCa 4.66. These results enabled us to calculate the cross-bridge distribution in the strongly attached states, and thereby deduce the force/cross-bridge. The results indicate that the force/cross-bridge is ∼15% less in E54K than WT, but remains similar to that of the WT protein in the case of E40K. We conclude that over-inhibition of the actomyosin interaction by E40K and E54K Tm mutants leads to a decreased force-generating ability at systole, which is the main mechanism underlying the early pathogenesis of DCM.  相似文献   

16.
17.
Isoniazid represents a first-line anti-tuberculosis medication in prevention and treatment. This prodrug is activated by a mycobacterial catalase-peroxidase enzyme called KatG in Mycobacterium tuberculosis), thereby inhibiting the synthesis of mycolic acid, required for the mycobacterial cell wall. Moreover, isoniazid activation by KatG produces some radical species (e.g., nitrogen monoxide), that display anti-mycobacterial activity. Remarkably, the ability of mycobacteria to persist in vivo in the presence of reactive nitrogen and oxygen species implies the presence in these bacteria of (pseudo-)enzymatic detoxification systems, including truncated hemoglobins (trHbs). Here, we report that isoniazid binds reversibly to ferric and ferrous M. tuberculosis trHb type N (or group I; Mt-trHbN(III) and Mt-trHbN(II), respectively) with a simple bimolecular process, which perturbs the heme-based spectroscopic properties. Values of thermodynamic and kinetic parameters for isoniazid binding to Mt-trHbN(III) and Mt-trHbN(II) are K = (1.1±0.1)×10−4 M, k on = (5.3±0.6)×103 M−1 s−1 and k off = (4.6±0.5)×10−1 s−1; and D = (1.2±0.2)×10−3 M, d on = (1.3±0.4)×103 M−1 s−1, and d off = 1.5±0.4 s−1, respectively, at pH 7.0 and 20.0°C. Accordingly, isoniazid inhibits competitively azide binding to Mt-trHbN(III) and Mt-trHbN(III)-catalyzed peroxynitrite isomerization. Moreover, isoniazid inhibits Mt-trHbN(II) oxygenation and carbonylation. Although the structure of the Mt-trHbN-isoniazid complex is not available, here we show by docking simulation that isoniazid binding to the heme-Fe atom indeed may take place. These data suggest a direct role of isoniazid to impair fundamental functions of mycobacteria, e.g. scavenging of reactive nitrogen and oxygen species, and metabolism.  相似文献   

18.

Background

The mainstay of toxoplasmosis treatment targets the folate biosynthetic pathways and has not changed for the last 50 years. The activity of these chemotherapeutic agents is restricted to one lifecycle stage of Toxoplasma gondii, they have significant toxicity, and the impending threat of emerging resistance to these agents makes the discovery of new therapies a priority. We now demonstrate that auranofin, an orally administered gold containing compound that was FDA approved for treatment of rheumatoid arthritis, has activity against Toxoplasma gondii in vitro (IC50 = 0.28 µM) and in vivo (1 mg/kg).

Methods/Principal Findings

Replication within human foreskin fibroblasts of RH tachyzoites was inhibited by auranofin. At 0.4 µM, auranofin inhibited replication, as measured by percent infected fibroblasts at 24 hrs, (10.94% vs. 24.66% of controls; p = 0.0003) with no effect on parasite invasion (16.95% vs. 12.91% p = 0.4331). After 18 hrs, 62% of extracellular parasites treated with auranofin were non-viable compared to control using an ATP viability assay (p = 0.0003). In vivo, a previously standardized chicken embryo model of acute toxoplasmosis was used. Fourteen day old chicken embryos were injected through the chorioallantoic vein with 1×104 tachyzoites of the virulent RH strain. The treatment group received one dose of auranofin at the time of inoculation (1 mg/kg estimated body weight). On day 5, auranofin-treated chicken embryos were 100% protected against death (p = 0.0002) and had a significantly reduced parasite load as determined by histopathology, immunohistochemistry and by the number of parasites quantified by real-time PCR.

Conclusions

These results reveal in vitro and in vivo activity of auranofin against T. gondii, suggesting that it may be an effective alternative treatment for toxoplasmosis.  相似文献   

19.

Background

The effectiveness of near-infrared imaging (NIR) interrogation of epidermal growth factor receptor (EGFR) expression as a sensitive biomarker of oral squamous cell carcinoma (OSCC) response to arsenic trioxide therapy was studied in mice.

Material and Methods

A431 OSCC in vitro were exposed to 0 µM, 0.5 µM, 2.5 µM, or 5 µM of As2O3 for 0 h, 24 h, 48 h and 72 h. Confocal microscopy and flow cytometry confirmed EGFR expression and demonstrated a sensitivity dose-related signal decline with As2O3 treatment. Next, mice with pharynx-implanted A431 cells received As2O3 i.p. every 48 h at 0.0, 0.5, 2.5, or 5 mg/kg/day (n = 6/group) from day 0 to 10. An intravenous NIR probe, EGF-Cy5.5, was injected at baseline and on days 4, 8, and 12 for dynamic NIR imaging. Tumor volume and body weights were measured three times weekly.

Results

In vitro, A431 EGFR expression was well appreciated in the controls and decreased (p<0.05) with increasing As2O3 dose and treatment duration. In vivo EGFR NIR tumor signal intensity decreased (p<0.05) in As2O3 treated groups versus controls from days 4 to 12, consistent with increasing dosage. Tumor volume diminished in a dose-related manner while body weight was unaffected. Immunohistochemical staining of excised tumors confirmed that EGFR expression was reduced by As2O3 treatment in a dose responsive pattern.

Conclusion

This study demonstrates for the first time that OSCC can be interrogated in vivo by NIR molecular imaging of the EGFR and that this biomarker is effective for the longitudinal assessment of OSCC response to As2O3 treatment.  相似文献   

20.
The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of bla CTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with bla CTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (K i = 0.017 µM) and better acylation efficiency (k +2/K′ = 0.44 µM−1s−1). It forms an acyl-enzyme covalent complex, which is quite stable (k +3 = 0.0057 s−1). Since increasing resistance has been reported against conventional β-lactam antibiotic-inhibitor combinations, we aspire to design a non-β-lactam core containing β-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (K i = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-β-lactam containing β-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号