首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.  相似文献   

2.
3.
4.
Campylobacter is a normal inhabitant of the chicken gut. Pathogenic infection with this organism in humans is accompanied by severe inflammation of the intestinal mucosal surface. The aim of this study was to evaluate the ability of Lactobacillus gasseri SBT2055 (LG2055) to inhibit the adhesion and invasion of Campylobacter jejuni in vitro and to suppress C. jejuni colonization of chicks in vivo. Pretreatment with LG2055 significantly reduced adhesion to and invasion of a human epithelial cell line, Intestine 407, by C. jejuni 81–176. Methanol (MeOH)-fixed LG2055 also reduced infection by C. jejuni 81–176. However, proteinase K (ProK)-treated LG2055 eliminated the inhibitory effects. Moreover, LG2055 co-aggregated with C. jejuni 81–176. ProK treatment prevented this co-aggregation, indicating that the co-aggregation phenotype mediated by the proteinaceous cell-surface components of LG2055 is important for reducing C. jejuni 81–176 adhesion and invasion. In an in vivo assay, oral doses of LG2055 were administered to chicks daily for 14 days after oral inoculation with C. jejuni 81–176. At 14 days post-inoculation, chicks treated with LG2055 had significantly reduced cecum colonization by C. jejuni. Reduction in the number of C. jejuni 81–176 cells adhering to and internalized by human epithelial cells demonstrated that LG2055 is an organism that effectively and competitively excludes C. jejuni 81–176. In addition, the results of the chick colonization assay suggest that treatment with LG2055 could be useful in suppressing C. jejuni colonization of the chicks at early growth stages.  相似文献   

5.
6.
7.
Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were characterized by an up-regulation lymphocyte activation, probably by regulatory T cells and an increased expression of the NLR recognition receptor NALP1. To our knowledge, this is the first time each of these responses has been observed in the avian response to an intestinal bacterial pathogen.  相似文献   

8.
Campylobacter jejuni is the most common bacterium that causes diarrhea worldwide, and chickens are considered the main reservoir of this pathogen. This study investigated the effects of serial truncation of lipooligosaccharide (LOS), a major component of the outer membrane of C. jejuni, on its bile resistance and intestinal colonization ability in chickens. Genes encoding manno-heptose synthetases or glycosyltransferases were inactivated to generate isogenic mutants. Serial truncation of the LOS core oligosaccharide caused a stepwise increase in susceptibilities of two C. jejuni strains, NCTC 11168 and 81-176, to bile acids. Inactivation of hldE, hldD, or waaC caused severe truncation of the core oligosaccharide, which greatly increased the susceptibility to bile acids. Both wild-type strains grew normally in chicken intestinal extracts, whereas the mutants with severe oligosaccharide truncation were not detected 12 h after inoculation. These mutants attained viable bacterial counts in the bile acid-free extracts 24 h after inoculation. The wild-type strain 11-164 was present in the cecal contents at >107 CFU/g on 5 days after challenge infection and after this time period, whereas its hldD mutant was present at <103 CFU/g throughout the experimental period. Trans-complementation of the hldD mutant with the wild-type hldD allele completely restored the in vivo colonization level to that of the wild-type strain. Mutants with a shorter LOS had higher hydrophobicities. Thus, the length of the LOS core oligosaccharide affected the surface hydrophobicity and bile resistance of C. jejuni as well as its ability to colonize chicken intestines.  相似文献   

9.
Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells.  相似文献   

10.
Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the in vitro and in vivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.  相似文献   

11.
12.
The mechanisms used by Campylobacter jejuni to colonize the (chicken) intestinal tract have not been defined. In this study, we obtained evidence that in the presence of chicken serum and mucus, C. jejuni secreted proteins that may play a role in the colonization of chicken gut (Campylobacter invasion antigen = Cia). C. jejuni strains NCTC11168V1 and 81-176, as well as an NCTC11168V1 flaA mutant, were found to colonize intestinal tract and secrete proteins in the presence of chicken mucus, chicken serum, or fetal bovine serum in cell culture–conditioned medium. C. jejuni strain NCTC11168V26, which was observed to be a poor colonizer compared with the other C. jejuni isolates, did not secrete Cia proteins. Secreted proteins were also recognized by Western immunoblot using sera from birds that had been colonized by C. jejuni. These data suggest that C. jejuni secretes Cia proteins during colonization of chicken gut and that these Cia proteins play an important role in colonization.  相似文献   

13.
14.
Consumption and handling of chicken meat are well-known risk factors for acquiring campylobacteriosis. This study aimed to describe the Campylobacter jejuni population in Finnish chickens and to investigate the distribution of C. jejuni genotypes on Finnish chicken farms over a period of several years. We included 89.8% of the total C. jejuni population recovered in Finnish poultry during 2004, 2006, 2007, 2008, and 2012 and used multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) to characterize the 380 isolates. The typing data was combined with isolate information on collection-time and farm of origin. The C. jejuni prevalence in chicken slaughter batches was low (mean 3.0%, CI95% [1.8%, 4.2%]), and approximately a quarter of Finnish chicken farms delivered at least one positive chicken batch yearly. In general, the C. jejuni population was diverse as represented by a total of 63 sequence types (ST), but certain predominant MLST lineages were identified. ST-45 clonal complex (CC) accounted for 53% of the isolates while ST-21 CC and ST-677 CC covered 11% and 9% of the isolates, respectively. Less than half of the Campylobacter positive farms (40.3%) delivered C. jejuni-contaminated batches in multiple years, but the genotypes (ST and PFGE types) generally varied from year to year. Therefore, no evidence for a persistent C. jejuni source for the colonization of Finnish chickens emerged. Finnish chicken farms are infrequently contaminated with C. jejuni compared to other European Union (EU) countries, making Finland a valuable model for further epidemiological studies of the C. jejuni in poultry flocks.  相似文献   

15.
16.
非编码RNA是一类没有开放阅读框、不能翻译成为蛋自质的RNA分子。在哺乳动物中,它们主要是指微小RNA、小干扰RNA、PIWI互作RNA和其他一些反义转录本等。它们在生物体内广泛存在,通过RNA干扰、基因沉默、基因印迹和DNA甲基化等机制调控着基因的表达。非编码RNA增加了真核细胞调控网络的复杂性,也为科学地解释一些现象提供了新的途径。  相似文献   

17.
18.
19.
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nalr strain) and one streptomycin-resistant strain (the 02-833L Strr strain). In vitro binding assays revealed that the C. jejuni F38011 Nalr and 02-833L Strr strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Strr strain relative to that of the C. jejuni F38011 Nalr strain competitively inhibited the binding of the C. jejuni F38011 Nalr strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Strr strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nalr strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号