首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Strigamia maritima (Myriapoda; Chilopoda) is a species from the soil-living order of geophilomorph centipedes. The Geophilomorpha is the most speciose order of centipedes with over a 1000 species described. They are notable for their large number of appendage bearing segments and are being used as a laboratory model to study the embryological process of segmentation within the myriapods. Using a scaffold derived from the recently published genome of Strigamia maritima that contained multiple mitochondrial protein-coding genes, here we report the complete mitochondrial genome of Strigamia, the first from any geophilomorph centipede. The mitochondrial genome of S. maritima is a circular molecule of 14,938 base pairs, within which we could identify the typical mitochondrial genome complement of 13 protein-coding genes and 2 ribosomal RNA genes. Sequences resembling 16 of the 22 transfer RNA genes typical of metazoan mitochondrial genomes could be identified, many of which have clear deviations from the standard ‘cloverleaf’ secondary structures of tRNA. Phylogenetic trees derived from the concatenated alignment of protein-coding genes of S. maritima and >50 other metazoans were unable to resolve the Myriapoda as monophyletic, but did support a monophyletic group of chilopods: Strigamia was resolved as the sister group of the scolopendromorph Scolopocryptos sp. and these two (Geophilomorpha and Scolopendromorpha), along with the Lithobiomorpha, formed a monophyletic group the Pleurostigmomorpha. Gene order within the S. maritima mitochondrial genome is unique compared to any other arthropod or metazoan mitochondrial genome to which it has been compared. The highly unusual organisation of the mitochondrial genome of Strigamia maritima is in striking contrast with the conservatively evolving nuclear genome: sampling of more members of this order of centipedes will be required to see whether this unusual organization is typical of the Geophilomorpha or results from a more recent reorganisation in the lineage leading to Strigamia.  相似文献   

2.
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.  相似文献   

3.
4.
Cyclospora cayetanensis is a human-specific coccidian parasite responsible for several food and water-related outbreaks around the world, including the most recent ones involving over 900 persons in 2013 and 2014 outbreaks in the USA. Multicopy organellar DNA such as mitochondrion genomes have been particularly informative for detection and genetic traceback analysis in other parasites. We sequenced the C. cayetanensis genomic DNA obtained from stool samples from patients infected with Cyclospora in Nepal using the Illumina MiSeq platform. By bioinformatically filtering out the metagenomic reads of non-coccidian origin sequences and concentrating the reads by targeted alignment, we were able to obtain contigs containing Eimeria-like mitochondrial, apicoplastic and some chromosomal genomic fragments. A mitochondrial genomic sequence was assembled and confirmed by cloning and sequencing targeted PCR products amplified from Cyclospora DNA using primers based on our draft assembly sequence. The results show that the C. cayetanensis mitochondrion genome is 6274 bp in length, with 33% GC content, and likely exists in concatemeric arrays as in Eimeria mitochondrial genomes. Phylogenetic analysis of the C. cayetanensis mitochondrial genome places this organism in a tight cluster with Eimeria species. The mitochondrial genome of C. cayetanensis contains three protein coding genes, cytochrome (cytb), cytochrome C oxidase subunit 1 (cox1), and cytochrome C oxidase subunit 3 (cox3), in addition to 14 large subunit (LSU) and nine small subunit (SSU) fragmented rRNA genes.  相似文献   

5.
The 2 species of the genus Anoplocephala (Anoplocephalidae), A. perfoliata and A. magna, are among the most important equine cestode parasites. However, there is little information about their differences at the molecular level. The present study revealed that the mitochondrial (mt) genome of A. magna was 13,759 bp in size and 700 bp shorter than that of A. perfoliata. The 2 species includes 2 rRNA, 22 tRNA, and 12 protein-coding genes each. The size of each of the 36 genes was the same as that of A. perfoliata, except for cox1, rrnL, trnC, trnS2(UCN), trnG, trnH, trnQ, and trnP. In the full mitochondrial genome, the sequence similarity was 87.1%. The divergence in the nucleotide and amino acid sequences of individual protein-coding genes ranged from 11.1% to 16% and 6.8% to 16.4%, respectively. The 2 noncoding regions of the mt genome of A. magna were 199 bp and 271 bp in length, while the equivalent regions in A. perfoliata were 875 bp and 276 bp, respectively. The results of this study support the proposal that A. magna and A. perfoliata are separate species, consistent with previous morphological analyses.  相似文献   

6.

Background

Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi.

Methodology/Principal Findings

The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron.

Conclusions/Significance

The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close relationship to Prototheca within the Trebouxiophyceae. The Helicosporidium mitochondrial genome does, however, contain a number of novel features, particularly relating to its introns.  相似文献   

7.
社鼠(Niviventer confucianus)属于啮齿目(Rodentia)、鼠科(Muridae)、白腹鼠属(Niviventer),关于该物种的分子系统学研究极少。为获取社鼠线粒体基因组全序列,提取其基因组总DNA,参照近缘物种线粒体基因组全序列设计34对特异性引物,利用PCR扩增全部片段后进行测序,之后对其基因组组成及结构特点进行了初步分析。结果表明,社鼠线粒体基因组全序列长16 281 bp(GenBank收录号:KJ152220),包含22个tRNA基因、13个蛋白质编码基因、2个rRNA基因和1个非编码控制区;基因组核苷酸组成为34.0%A、28.6%T、24.9%C、12.5%G。将所得序列与社鼠近缘物种(川西白腹鼠、小家鼠、褐家鼠)的线粒体全基因组进行比较,结果显示,四个物种的线粒体基因组虽然在基因组大小、部分tRNA二级结构、部分蛋白质编码基因的起始或终止密码子及控制区长度和碱基组成上有差异,但基因组结构和序列特征方面都具有较高的相似性。四个物种线粒体全基因组间的遗传距离显示,社鼠与川西白腹鼠距离最近,而与小家鼠距离最远。该研究为利用线粒体全基因组信息进行啮齿类分子系统学研究提供了有价值的资料。  相似文献   

8.

Background

Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.

Methods

Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.

Conclusions

This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.  相似文献   

9.
The complete sequence of honeybee (Apis mellifera) mitochondrial DNA is reported being 16,343 bp long in the strain sequenced. Relative to their positions in the Drosophila map, 11 of the tRNA genes are in altered positions, but the other genes and regions are in the same relative positions. Comparisons of the predicted protein sequences indicate that the honeybee mitochondrial genetic code is the same as that for Drosophila; but the anticodons of two tRNAs differ between these two insects. The base composition shows extreme bias, being 84.9% AT (cf. 78.6% in Drosophila yakuba). In protein-encoding genes, the AT bias is strongest at the third codon positions (which in some cases lack guanines altogether), and least in second codon positions. Multiple stepwise regression analysis of the predicted products of the protein-encoding genes shows a significant association between the numbers of occurrences of amino acids and %T in codon family, but not with the number of codons per codon family or other parameters associated with codon family base composition. Differences in amino acid abundances are apparent between the predicted Apis and Drosophila proteins, with a relative abundance in the Apis proteins of lysine and a relative deficiency of alanine. Drosophila alanine residues are as often replaced by serine as conserved in Apis. The differences in abundances between Drosophila and Apis are associated with %AT in the codon families, and the degree of divergence in amino acid composition between proteins correlates with the divergence in %AT at the second codon positions. Overall, transversions are about twice as abundant as transitions when comparing Drosophila and Apis protein-encoding genes, but this ratio varies between codon positions. Marked excesses of transitions over chance expectation are seen for the third positions of protein-coding genes and for the gene for the small subunit of ribosomal RNA. For the third codon positions the excess of transitions is adequately explained as due to the restriction of observable substitutions to transitions for conserved amino acids with two-codon families; the excess of transitions over expectation for the small ribosomal subunit suggests that the conservation of nucleotide size is favored by selection.  相似文献   

10.
Phylogenetic relationships between the extinct woolly mammoth(Mammuthus primigenius), and the Asian(Elephas maximus) and African savanna(Loxodonta africana) elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs) of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch—the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as ~1,600–1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests thatM. primigenius andE. maximus are sister species that diverged soon after their common ancestor split from theL. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population ofM. primigenius throughout the late Pleistocene.  相似文献   

11.
12.
In this study, we fully sequenced the circular plastid genome of a brown alga, Undaria pinnatifida. The genome is 130,383 base pairs (bp) in size; it contains a large single-copy (LSC, 76,598 bp) and a small single-copy region (SSC, 42,977 bp), separated by two inverted repeats (IRa and IRb: 5,404 bp). The genome contains 139 protein-coding, 28 tRNA, and 6 rRNA genes; none of these genes contains introns. Organization and gene contents of the U. pinnatifida plastid genome were similar to those of Saccharina japonica. There is a co-linear relationship between the plastid genome of U. pinnatifida and that of three previously sequenced large brown algal species. Phylogenetic analyses of 43 taxa based on 23 plastid protein-coding genes grouped all plastids into a red or green lineage. In the large brown algae branch, U. pinnatifida and S. japonica formed a sister clade with much closer relationship to Ectocarpus siliculosus than to Fucus vesiculosus. For the first time, the start codon ATT was identified in the plastid genome of large brown algae, in the atpA gene of U. pinnatifida. In addition, we found a gene-length change induced by a 3-bp repetitive DNA in ycf35 and ilvB genes of the U. pinnatifida plastid genome.  相似文献   

13.
In order to enrich the phylogenetic diversity represented in the available sequenced bacterial genomes and as part of an “Assembling the Tree of Life” project, we determined the genome sequence of Thermomicrobium roseum DSM 5159. T. roseum DSM 5159 is a red-pigmented, rod-shaped, Gram-negative extreme thermophile isolated from a hot spring that possesses both an atypical cell wall composition and an unusual cell membrane that is composed entirely of long-chain 1,2-diols. Its genome is composed of two circular DNA elements, one of 2,006,217 bp (referred to as the chromosome) and one of 919,596 bp (referred to as the megaplasmid). Strikingly, though few standard housekeeping genes are found on the megaplasmid, it does encode a complete system for chemotaxis including both chemosensory components and an entire flagellar apparatus. This is the first known example of a complete flagellar system being encoded on a plasmid and suggests a straightforward means for lateral transfer of flagellum-based motility. Phylogenomic analyses support the recent rRNA-based analyses that led to T. roseum being removed from the phylum Thermomicrobia and assigned to the phylum Chloroflexi. Because T. roseum is a deep-branching member of this phylum, analysis of its genome provides insights into the evolution of the Chloroflexi. In addition, even though this species is not photosynthetic, analysis of the genome provides some insight into the origins of photosynthesis in the Chloroflexi. Metabolic pathway reconstructions and experimental studies revealed new aspects of the biology of this species. For example, we present evidence that T. roseum oxidizes CO aerobically, making it the first thermophile known to do so. In addition, we propose that glycosylation of its carotenoids plays a crucial role in the adaptation of the cell membrane to this bacterium''s thermophilic lifestyle. Analyses of published metagenomic sequences from two hot springs similar to the one from which this strain was isolated, show that close relatives of T. roseum DSM 5159 are present but have some key differences from the strain sequenced.  相似文献   

14.
The 22,704-bp circular mitochondrial DNA (mtDNA) of the chlamydomonad alga Chlorogonium elongatum was completely cloned and sequenced. The genome encodes seven proteins of the respiratory electron transport chain, subunit 1 of the cytochrome oxidase complex (cox1), apocytochrome b (cob), five subunits of the NADH dehydrogenase complex (nad1, nad2, nad4, nad5, and nad6), a set of three tRNAs (Q, W, M), and the large (LSU)- and small (SSU)-subunit ribosomal RNAs. Six group-I introns were found, two each in the cox1, cob, and nad5 genes. In each intron an open reading frame (ORF) related to maturases or endonucleases was identified. Both the LSU and the SSU rRNA genes are split into fragments intermingled with each other and with other genes. Although the average A + T content is 62.2%, GC-rich clusters were detected in intergenic regions, in variable domains of the rRNA genes, and in introns and intron-encoded ORFs. A comparison of the genome maps reveals that C. elongatum and Chlamydomonas eugametos mtDNAs are more closely related to one another than either is to Chlamydomonas reinhardtii mtDNA. Received: 3 November 1997 / Accepted: 12 January 1998  相似文献   

15.
Determining the levels of human mitochondrial heteroplasmy is of utmost importance in several fields. In spite of this, there are currently few published works that have focused on this issue. In order to increase the knowledge of mitochondrial DNA (mtDNA) heteroplasmy, the main goal of this work is to investigate the frequency and the mutational spectrum of heteroplasmy in the human mtDNA genome. To address this, a set of nine primer pairs designed to avoid co-amplification of nuclear DNA (nDNA) sequences of mitochondrial origin (NUMTs) was used to amplify the mitochondrial genome in 101 individuals. The analysed individuals represent a collection with a balanced representation of genders and mtDNA haplogroup distribution, similar to that of a Western European population. The results show that the frequency of heteroplasmic individuals exceeds 61%. The frequency of point heteroplasmy is 28.7%, with a widespread distribution across the entire mtDNA. In addition, an excess of transitions in heteroplasmy were detected, suggesting that genetic drift and/or selection may be acting to reduce its frequency at population level. In fact, heteroplasmy at highly stable positions might have a greater impact on the viability of mitochondria, suggesting that purifying selection must be operating to prevent their fixation within individuals. This study analyses the frequency of heteroplasmy in a healthy population, carrying out an evolutionary analysis of the detected changes and providing a new perspective with important consequences in medical, evolutionary and forensic fields.  相似文献   

16.
Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559T, which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559T contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559T, which identified it as an obligate chemoheterotroph.The phylum Bacteroidetes comprises 6 to ∼30% of total bacterial communities in the ocean by fluorescence in situ hybridization (8-10). Most marine Bacteroidetes are in the family Flavobacteriaceae, most of which are aerobic respiratory heterotrophs that form a well-defined clade by 16S rRNA phylogenetic analyses (4). The members of this family are well known for degrading macromolecules, including chitin, DNA, cellulose, starch, and pectin (17), suggesting their environmental roles as detritus decomposers in the ocean (6). Marine Polaribacter and Dokdonia species in the Flavobacteriaceae have also shown to have photoheterotrophic metabolism mediated by proteorhodopsins (11, 12).Several strains of the family Flavobacteriaceae were isolated from the Sargasso Sea and Oregon coast, using high-throughput culturing approaches (7). Croceibacter atlanticus HTCC2559T was cultivated from seawater collected at a depth of 250 m from the Sargasso Sea and was identified as a new genus in the family Flavobacteriaceae based on its 16S rRNA gene sequence similarities (6). Strain HTCC2559T met the minimal standards for genera of the family Flavobacteriaceae (3) on the basis of phenotypic characteristics (6).Here we report the complete genome sequence of Croceibacter atlanticus HTCC2559T. The genome sequencing was initiated by the J. Craig Venter Institute as a part of the Moore Foundation Microbial Genome Sequencing Project and completed in the current announcement. Gaps among contigs were closed by Genotech Co., Ltd. (Daejeon, Korea), using direct sequencing of combinatorial PCR products (16). The HTCC2559T genome was analyzed with a genome annotation system based on GenDB (14) at Oregon State University and with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (15, 16).The HTCC2559T genome is 2,952,962 bp long, with 33.9 mol% G+C content, and there was no evidence of plasmids. The number of protein-coding genes was 2,715; there were two copies of the 16S-23S-5S rRNA operon and 36 tRNA genes. The HTCC2559T genome contained genes for a complete tricarboxylic acid cycle, glycolysis, and a pentose phosphate pathway. The genome also contained sets of genes for metabolic enzymes involved in carotenoid biosynthesis and also a serine/glycine hydroxymethyltransferase, which is often associated with the assimilatory serine cycle (13). The potential for HTCC2559T to use bacterial type III polyketide synthase (PKS) needs to be confirmed because this organism had a naringenin-chalcone synthase (CHS) or chalcone synthase (EC 2.3.1.74), a key enzyme in flavonoid biosynthesis. CHS initiates the addition of three molecules of malonyl coenzyme A (malonyl-CoA) to a starter CoA ester (e.g., 4-coumaroyl-CoA) (1) and takes part in a few bacterial type III polyketide synthase systems (1, 2, 5, 18).The complete genome sequence confirmed that strain HTCC2559T is an obligate chemoheterotroph because no genes for phototrophy were found. As expected from physiological characteristics (6), the HTCC2559T genome contained a set of genes coding for enzymes required to degrade high-molecular-weight compounds, including peptidases, metallo-/serine proteases, pectinase, alginate lyases, and α-amylase.  相似文献   

17.
李氏大足蝗线粒体全基因组序列分析   总被引:1,自引:1,他引:1  
高佳  程春花  黄原 《动物学研究》2009,30(6):603-612
采用长距PCR 扩增及保守引物步移法测定并注释了李氏大足蝗( Aeropus licenti Chang)的线粒体基因组全序列。结果表明,李氏大足蝗的线粒体基因组全长15 597 bp,A+T 含量为74.8%,37个基因位置与飞蝗的一致,基因间隔序列共计17处105 bp,间隔长度从1~21 bp不等;有10对基因间存在58 bp重叠,重叠碱基数在1~17 bp之间。13个蛋白质编码基因中找到4种可能的起始密码子;有12个基因在基因3'端找到完全的TAA或TAG 终止密码子,只有ND5基因终止密码子为不完整的T。除tRNASer(AGN)外,其余21个tRNA基因的二级结构均属典型的三叶草结构。tRNASer(AGN)的DHU臂缺失,在相应的位置上只形成一个环。预测的lrRNA二级结构总共有6个结构域(结构域Ⅲ缺失),47个茎环结构;预测的srRNA的二级结构包含3个结构域,31个茎环结构。A+T 丰富区长度为712 bp。  相似文献   

18.
藏鸡线粒体全基因组序列的测定和分析   总被引:11,自引:0,他引:11  
童晓梅  梁羽  王威  徐树青  郑晓光  汪建  于军 《遗传》2006,28(7):769-777
通过PCR扩增,测序,拼接,获得藏鸡(Tibetan Chicken)线粒体全基因组序列并进行数据分析处理。藏鸡线粒体全基因组序列全长16783bp,共有13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个D-loop区。模拟电子酶切结果显示,藏鸡DraI酶的酶切结果和先前报道的原鸡,茶花鸡,尼西鸡和大理漾濞黄鸡的酶切结果都不相同,为藏鸡特有。基于D-loop区全序列和13个蛋白质编码基因序列,采用N-J算法与原鸡属4个种,3个亚种和3个家鸡品系构建系统进化树:初步确定藏鸡起源于红原鸡,与家鸡中的来航鸡、白洛克鸡亲缘关系最近,但是藏鸡的进化与来航鸡、白洛克鸡这两个家鸡品系又显得相对独立。推测可能原因是藏鸡的祖先在进入高原以后处于相对封闭的环境,从而形成了独特群体遗传特性。  相似文献   

19.
药用蕈菌紫芝液体培养的生长特征分析   总被引:4,自引:0,他引:4  
使用专门设计的ALR ff蕈菌液体培养反应器 ,研究了有关紫芝液体培养过程中菌丝生长的特征。结果表明 ,液体培养时紫芝菌丝生长对温度有较宽的适应范围 2 5℃~ 3 5℃ ,但生长比速率相差很大。通气量由 0 93vvm提高到 1 6 4vvm时 ,菌丝生长比速率明显地增加 ,最大值为 0 0 4 4 4 (h- 1) ;当通气量进一步提高到 2 5 0vvm时 ,生长比速率反而下降。与低糖浓度比较 ,较高糖浓度 (2 80g 1 0 0mL)可以使生长迟滞期缩短 ;培养后期菌丝缠绕成浓密颗粒 ,较高糖浓度可以促进生长。在整个培养过程中 ,糖浓度较低时葡萄糖转化成菌体的生长效率明显高于较高葡萄糖浓度的效率。碳源限制生长的连续培养研究结果 ,进一步反映了菌丝不同生长活性使菌丝物具有不同形态结构。菌体量、限制生长底物、菌体生成率的三者关系与细菌有明显的差异。并且 ,在 0 0 1 0~ 0 2 2 0 (h- 1)稀释率范围内菌丝生长符合Contois方程  相似文献   

20.
Bivalve mitochondrial genomes show many uncommon features, like additional genes, high rates of gene rearrangement, high A-T content. Moreover, Doubly Uniparental Inheritance (DUI) is a distinctive inheritance mechanism allowing some bivalves to maintain and transmit two separate sex-linked mitochondrial genomes. Many bivalve mitochondrial features, such as gene extensions or additional ORFs, have been proposed to be related to DUI but, up to now, this topic is far from being understood. Several species are known to show this unusual organelle inheritance but, being widespread only among Unionidae and Mytilidae, DUI distribution is unclear. We sequenced and characterized the complete female- (F) and male-transmitted (M) mitochondrial genomes of Meretrix lamarckii, which, in fact, is the second species of the family Veneridae where DUI has been demonstrated so far. The two mitochondrial genomes are comparable in length and show roughly the same gene content and order, except for three additional tRNAs found in the M one. The two sex-linked genomes show an average nucleotide divergence of 16%. A 100-aminoacid insertion in M. lamarckii M-cox2 gene was found; moreover, additional ORFs have been found in both F and M Long Unassigned Regions of M. lamarckii. Even if no direct involvement in DUI process has been demonstrated so far, the finding of cox2 insertions and supernumerary ORFs in M. lamarckii both strengthens this hypothesis and widens the taxonomical distribution of such unusual features. Finally, the analysis of inter-sex genetic variability shows that DUI species form two separate clusters, namely Unionidae and Mytilidae+Veneridae; this dichotomy is probably due to different DUI regimes acting on separate taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号