首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major causes of chemotherapy failure in cancer treatment is multidrug resistance (MDR) which is mediated by the ABCB1/P-glycoprotein. Previously, through the use of an extensive screening process, we found that vardenafil, a phosphodiesterase 5 (PDE-5) inhibitor significantly reverses MDR in ABCB1 overexpressing cancer cells, and its efficacy was greater than that of tadalafil, another PDE-5 inhibitor. The present study was designed to determine the reversal mechanisms of vardenafil and tadalafil on ABC transporters-mediated MDR. Vardenafil or tadalafil alone, at concentrations up to 20 μM, had no significant toxic effects on any of the cell lines used in this study, regardless of their membrane transporter status. However, vardenafil when used in combination with anticancer substrates of ABCB1, significantly potentiated their cytotoxicity in ABCB1 overexpressing cells in a concentration-dependent manner, and this effect was greater than that of tadalafil. The sensitivity of the parenteral cell lines to cytotoxic anticancer drugs was not significantly altered by vardenafil. The differential effects of vardenafil and tadalafil appear to be specific for the ABCB1 transporter as both vardenafil and tadalafil had no significant effect on the reversal of drug resistance conferred by ABCC1 (MRP1) and ABCG2 (BCRP) transporters. Vardenafil significantly increased the intracellular accumulation of [(3)H]-paclitaxel in the ABCB1 overexpressing KB-C2 cells. In addition, vardenafil significantly stimulated the ATPase activity of ABCB1 and inhibited the photolabeling of ABCB1 with [(125)I]-IAAP. Furthermore, Western blot analysis indicated the incubation of cells with either vardenafil or tadalafil for 72 h did not alter ABCB1 protein expression. Overall, our results suggest that vardenafil reverses ABCB1-mediated MDR by directly blocking the drug efflux function of ABCB1.  相似文献   

2.
In this study we investigated the effect of linsitinib on the reversal of multidrug resistance (MDR) mediated by the overexpression of the ATP-binding cassette (ABC) subfamily members ABCB1, ABCG2, ABCC1 and ABCC10. Our results indicate for the first time that linsitinib significantly potentiate the effect of anti-neoplastic drugs mitoxantrone (MX) and SN-38 in ABCG2-overexpressing cells; paclitaxel, docetaxel and vinblastine in ABCC10-overexpressing cells. Linsitinib moderately enhanced the cytotoxicity of vincristine in cell lines overexpressing ABCB1, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, linsitinib significantly increased the intracellular accumulation and decreased the efflux of [3H]-MX in ABCG2-overexpressing cells and [3H]-paclitaxel in ABCC10-overexpressing cells. However, linsitinib, at a concentration that reversed MDR, did not significantly alter the expression levels of either the ABCG2 or ABCC10 transporter proteins. Furthermore, linsitinib did not significantly alter the intracellular localization of ABCG2 or ABCC10. Moreover, linsitinib stimulated the ATPase activity of ABCG2 in a concentration-dependent manner. Overall, our study suggests that linsitinib attenuates ABCG2- and ABCC10-mediated MDR by directly inhibiting their function as opposed to altering ABCG2 or ABCC10 protein expression.  相似文献   

3.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

4.

Introduction

A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel.

Methods

In vivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2.

Results

Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08).

Conclusions

Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.  相似文献   

5.
Matrix metalloproteinase-2 (MMP-2) is a key intra- and extra-cellular protease which contributes to several oxidative stress related pathologies. A molecular understanding of 72 kDa MMP-2 activity, directly mediated by S-glutathiolation of its cysteine residues in the presence of peroxynitrite (ONOO) and by phosphorylation of its serine and threonine residues, is essential to develop new generation inhibitors of intracellular MMP-2. Within its propeptide and collagen binding domains there is an interesting juxtaposition of predicted phosphorylation sites with nearby cysteine residues which form disulfide bonds. However, the combined effect of these two post-translational modifications on MMP-2 activity has not been studied. The activity of human recombinant 72 kDa MMP-2 (hrMMP-2) following in vitro treatments was measured by troponin I proteolysis assay and a kinetic activity assay using a fluorogenic peptide substrate. ONOO treatment in the presence of 30 µM glutathione resulted in concentration-dependent changes in MMP-2 activity, with 0.1–1 µM increasing up to twofold and 100 µM attenuating its activity. Dephosphorylation of MMP-2 with alkaline phosphatase markedly increased its activity by sevenfold, either with or without ONOO. Dephosphorylation of MMP-2 also affected the conformational structure of the enzyme as revealed by circular dichroism studies, suggesting an increase in the proportion of α-helices and a decrease in β-strands compared to the phosphorylated form of MMP-2. These results suggest that ONOO activation (at low µM) and inactivation (at high µM) of 72 kDa MMP-2, in the presence or absence of glutathione, is also influenced by its phosphorylation status. These insights into the role of post-translational modifications in the structure and activity of 72 kDa MMP-2 will aid in the development of inhibitors specifically targeting intracellular MMP-2.  相似文献   

6.

Aims

The molecular mechanisms of the vasoconstrictor responses evoked by hydrogen peroxide (H2O2) have not been clearly elucidated in skeletal muscle arterioles.

Methods and Results

Changes in diameter of isolated, cannulated and pressurized gracilis muscle arterioles (GAs) of Wistar-Kyoto rats were determined under various test conditions. H2O2 (10–100 µM) evoked concentration-dependent constrictions in the GAs, which were inhibited by endothelium removal, or by antagonists of phospholipase A (PLA; 100 µM 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid), protein kinase C (PKC; 10 µM chelerythrine), phospholipase C (PLC; 10 µM U-73122), or Src family tyrosine kinase (Src kinase; 1 µM Src Inhibitor-1). Antagonists of thromboxane A2 (TXA2; 1 µM SQ-29548) or the non-specific cyclooxygenase (COX) inhibitor indomethacin (10 µM) converted constrictions to dilations. The COX-1 inhibitor (SC-560, 1 µM) demonstrated a greater reduction in constriction and conversion to dilation than that of COX-2 (celecoxib, 3 µM). H2O2 did not elicit significant changes in arteriolar Ca2+ levels measured with Fura-2.

Conclusions

These data suggest that H2O2 activates the endothelial Src kinase/PLC/PKC/PLA pathway, ultimately leading to the synthesis and release of TXA2 by COX-1, thereby increasing the Ca2+ sensitivity of the vascular smooth muscle cells and eliciting constriction in rat skeletal muscle arterioles.  相似文献   

7.

Background

Statins (3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitors) consumption provides beneficial effects on cardiovascular systems. However, effects of statins on vascular KATP channel gatings are unknown.

Methods

Pig left anterior descending coronary artery and human left internal mammary artery were isolated and endothelium-denuded for tension measurements and Western immunoblots. Enzymatically-dissociated/cultured arterial myocytes were used for patch-clamp electrophysiological studies and for [Ca2+]i, [ATP]i and [glucose]o uptake measurements.

Results

The cromakalim (10 nM to 10 µM)- and pinacidil (10 nM to 10 µM)-induced concentration-dependent relaxation of porcine coronary artery was inhibited by simvastatin (3 and 10 µM). Simvastatin (1, 3 and 10 µM) suppressed (in okadaic acid (10 nM)-sensitive manner) cromakalim (10 µM)- and pinacidil (10 µM)-mediated opening of whole-cell KATP channels of arterial myocytes. Simvastatin (10 µM) and AICAR (1 mM) elicited a time-dependent, compound C (1 µM)-sensitive [3H]-2-deoxy-glucose uptake and an increase in [ATP]i levels. A time (2–30 min)- and concentration (0.1–10 µM)-dependent increase by simvastatin of p-AMPKα-Thr172 and p-PP2A-Tyr307 expression was observed. The enhanced p-AMPKα-Thr172 expression was inhibited by compound C, ryanodine (100 µM) and KN93 (10 µM). Simvastatin-induced p-PP2A-Tyr307 expression was suppressed by okadaic acid, compound C, ryanodine, KN93, phloridzin (1 mM), ouabain (10 µM), and in [glucose]o-free or [Na+]o-free conditions.

Conclusions

Simvastatin causes ryanodine-sensitive Ca2+ release which is important for AMPKα-Thr172 phosphorylation via Ca2+/CaMK II. AMPKα-Thr172 phosphorylation causes [glucose]o uptake (and an [ATP]i increase), closure of KATP channels, and phosphorylation of AMPKα-Thr172 and PP2A-Tyr307 resulted. Phosphorylation of PP2A-Tyr307 occurs at a site downstream of AMPKα-Thr172 phosphorylation.  相似文献   

8.
Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.  相似文献   

9.
Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM), concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M−1 s−1 and 0.58 s−1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM) was similar at all kainate concentrations (3–100 µM), demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics.  相似文献   

10.
The ADP/ATP carrier of beef heart mitochondria is able to bind 2-azido-[α-32P]ADP in the dark with a Kd value of 8 μM. 2-Azido ADP is not transported and it inhibits ADP transport and ADP binding. Photoirradiation of beef heart mitochondria with 2-azido-[α-32P]ADP results mainly in photolabeling of the ADP/ATP carrier protein; photolabeling is prevented by carboxyatractyloside, a specific inhibitor of ADP/ATP transport. Upon photoirradiation of inside-out submitochondrial particles with 2-azido-[α-32P]ADP, both the ADP/ATP carrier and the β subunit of the membrane-bound F1-ATPase are covalently labeled. The binding specificity of 2-azido-[α-32P]ADP for the β subunit of F1-ATPase is ascertained by prevention of photolabeling of isolated F1 by preincubation with an excess of ADP.  相似文献   

11.
Using 125iodine-labeled α-bungarotoxin (α-BGT-125I) and quantitative radioautography, we have studied the time-course of the change in acetylcholine (ACh) receptor distribution and density occurring in rat diaphragm after denervation. In innervated fibers, ACh receptors are localized at the neuromuscular junction and the extrajunctional receptor density is less than five receptors per square micrometer. The extrajunctional receptor density begins to increase between 2 and 3 days after denervation and increases approximately linearly to 1695 receptors/µm2 at 14 days, subsequently decreasing to 529 receptors/µm2 at 45 days. We have isolated plasma membranes from rat leg muscles at various times after denervation and find that the change in concentration of ACh receptors in the membranes measured by α-BGT-125I binding and scintillation counting follows a time-course similar to the change in ACh receptor density measured radioautographically. Furthermore, we have correlated extrajunctional ACh receptor density measured by radioautography with extrajunctional ACh sensitivity measured by iontophoretic application of ACh and intracellular recording and find that the log of ACh receptor density is related to 0.53 times the log of ACh sensitivity. These results are discussed in terms of the electrophysiological experiments on the ACh receptor and the recent, more biochemical approaches to the study of ACh receptor control and function.  相似文献   

12.
Propofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [3H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain. Here, we use a photoreactive analog of propofol (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol ([3H]AziPm)) to identify propofol-binding sites in heterologously expressed human α1β3 GABAARs. Propofol, AziPm, etomidate, and R-mTFD-MPAB each inhibited [3H]AziPm photoincorporation into GABAAR subunits maximally by ∼50%. When the amino acids photolabeled by [3H]AziPm were identified by protein microsequencing, we found propofol-inhibitable photolabeling of amino acids in the β3-α1 subunit interface (β3Met-286 in β3M3 and α1Met-236 in α1M1), previously photolabeled by [3H]azietomidate, and α1Ile-239, located one helical turn below α1Met-236. There was also propofol-inhibitable [3H]AziPm photolabeling of β3Met-227 in βM1, the amino acid in the α1-β3 subunit interface photolabeled by R-[3H]mTFD-MPAB. The propofol-inhibitable [3H]AziPm photolabeling in the GABAAR β3 subunit in conjunction with the concentration dependence of inhibition of that photolabeling by etomidate or R-mTFD-MPAB also establish that each anesthetic binds to the homologous site at the β3-β3 subunit interface. These results establish that AziPm as well as propofol bind to the homologous intersubunit sites in the GABAAR transmembrane domain that binds etomidate or R-mTFD-MPAB with high affinity.  相似文献   

13.
A quantitative analysis of the volumes, surface areas, and dimensions of the ultrastructural components in the soleus muscle fibers of the guinea pig was made by using point counting methods of stereology. Muscle fibers have structural orientation (anisotropy) and have spatial gradients of the structures within the fiber; therefore the standard stereological methods were modified where necessary. The entire analysis was repeated at two section orientations to test the modifications and identical results obtained from both. The volume of lipid droplets was 0.20 ± 0.06% (mean ± standard error, n = 5 animals) and the nuclei volume was 0.86 ± 0.20% of the fiber volume. The total mitochondrial volume was 4.85 ± 0.66% of the fiber volume with about one-third being found in an annulus within 1 µm of the sarcolemma. The mitochondrial volume in the remaining core of the fiber was 3.6 ± 0.4%. The T system has a volume of 0.14 ± 0.01% and a surface area of 0.064 ± 0.005 µm2/µm3 of the fiber volume. The surface area of the sarcolemma is 0.116 ± 0.013 µm2/µm3 which is twice the T system surface area. The volume of the entire sarcoplasmic reticulum is 3.52 ± 0.33% and the surface area is 0.97 ± 0.09 µm2/µm3. The sarcoplasmic reticulum is composed of the terminal cisternae whose volume is 1.04 ± 0.19% and surface area is 0.24 ± 0.05 µm2/µm3. The tubules of the sarcoplasmic reticulum in the I band and A band have volumes of 1.97 ± 0.24% and 0.51 ± 0.08%, and the surface areas of the I and A band reticulum are 0.56 ± 0.07 µm2/µm3 and 0.16 ± 0.04 µm2/µm3, respectively. The Z line width, myofibril and fiber diameters were measured.  相似文献   

14.
Tyrosine kinase inhibitors (TKIs) are important in managing lymphoid malignancies by targeting B-cell receptor signaling pathways. Entospletinib (GS-9973) is an oral, selective inhibitor of spleen tyrosine kinase (Syk), currently in the phase II clinical trials for the treatment of chronic lymphocytic leukemia. Syk is abundantly present in the cells of hematopoietic lineage that mediates cell proliferation, differentiation, and adhesion. In this current study, we evaluated the efficacy of GS-9973 to overcome multidrug resistance (MDR) due to the overexpression of the ABCG2 transporter in the non-small cell lung cancer (NSCLC) cell line, NCI-H460/MX20. In vitro, 3 μM of GS-9973 reversed the drug resistance of NCI-H460/MX20 cell line to mitoxantrone or doxorubicin. GS-9973, at 3 μM reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the protein level but did not alter the ABCG2 mRNA expression and subcellular localization of the ABCG2 protein compared to drug-resistant cells incubated with the vehicle. GS-9973 produced a moderate concentration-dependent increase in the ATPase activity of ABCG2 (EC50 = 0.42 µM) and molecular docking data indicated that GS-9973 had a high affinity (-10.226 kcal/mol) for the substrate-binding site of ABCG2. Finally, HPLC analysis proved that the intracellular concentration of GS-9973 is not significantly different in both parental and resistant cell lines. In conclusion, our study suggests that in vitro, GS-9973 in combination with certain anticancer drugs, represent a strategy to overcome ABCG2-mediated MDR cancers.  相似文献   

15.

Background

The global disparity in cancer incidence remains a major public health problem. We focused on prostate cancer since microscopic disease in men is common, but the incidence of clinical disease varies more than 100 fold worldwide. Ca2+ signaling is a central regulator of cell proliferation, but has received little attention in cancer prevention. We and others have reported a strong dose-dependent reduction in the incidence of prostate and lung cancer within populations exposed to boron (B) in drinking water and food; and in tumor and cell proliferation in animal and cell culture models.

Methods/Principal Findings

We examined the impact of B on Ca2+ stores using cancer and non-cancer human prostate cell lines, Ca2+ indicators Rhod-2 AM and Indo-1 AM and confocal microscopy. In DU-145 cells, inhibition of Ca2+ release was apparent following treatment with Ringers containing RyR agonists cADPR, 4CmC or caffeine and respective levels of BA (50 µM), (1, 10 µM) or (10, 20, 50,150 µM). Less aggressive LNCaP cancer cells required 20 µM BA and the non-tumor cell line PWR1E required 150 µM BA to significantly inhibit caffeine stimulated Ca2+ release. BA (10 µM) and the RyR antagonist dantroline (10 µM) were equivalent in their ability to inhibit ER Ca2+ loss. Flow cytometry and confocal microscopy analysis showed exposure of DU-145 cells to 50 µM BA for 1 hr decreased stored [Ca2+] by 32%.

Conclusion/Significance

We show B causes a dose dependent decrease of Ca2+ release from ryanodine receptor sensitive stores. This occurred at BA concentrations present in blood of geographically disparate populations. Our results suggest higher BA blood levels lower the risk of prostate cancer by reducing intracellular Ca2+ signals and storage.  相似文献   

16.
More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain of FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.  相似文献   

17.
Effect of ATP on the Calcium Efflux in Dialyzed Squid Giant Axons   总被引:12,自引:9,他引:3       下载免费PDF全文
Dialysis perfusion technique makes it possible to control the internal composition of squid giant axons. Calcium efflux has been studied in the presence and in the virtual absence (<5 µM) of ATP. The mean calcium efflux from axons dialyzed with 0.3 µM ionized calcium, [ATP]i > 1,000 µM, and bathed in artificial seawater (ASW) was 0.24 ± 0.02 pmol·cm-2·s-1 (P/CS) (n = 8) at 22°C. With [ATP]i < 5 µM the mean efflux was 0.11 ± 0.01 P/CS (n = 15). The curve relating calcium efflux to [ATP]i shows a constant residual calcium efflux in the range of 1–100 µM [ATP]i. An increase of the calcium efflux is observed when [ATP]i is >100 µM and saturates at [ATP]i > 1,000 µM. The magnitude of the ATP-dependent fraction of the calcium efflux varies with external concentrations of Na+, Ca++, and Mg++. These results suggest that internal ATP changes the affinity of the calcium transport system for external cations.  相似文献   

18.
DNA bending induced by six DNA (cytosine-5) methyltransferases was studied using circular permutation gel mobility shift assay. The following bend angles were obtained: M.BspRI (GGm5CC), 46–50°; M.HaeIII (GGm5CC), 40–43°; M.SinI (GGWm5CC), 34–37°; M.Sau96I (GGNm5CC), 52–57°; M.HpaII (Cm5CGG), 30°; and M.HhaI (Gm5CGC), 13°. M.HaeIII was also tested with fragments carrying a methylated binding site, and it was found to induce a 32° bend. A phase-sensitive gel mobility shift assay, using a set of DNA fragments with a sequence-directed bend and a single methyltransferase binding site, indicated that M.HaeIII and M.BspRI bend DNA toward the minor groove. The DNA curvature induced by M.HaeIII contrasts with the lack of DNA bend observed for a covalent M.HaeIII–DNA complex in an earlier X-ray study. Our results and data from other laboratories show a correlation between the bending properties and the recognition specificities of (cytosine-5) methyltransferases: enzymes recognizing a cytosine 3′ to the target cytosine tend to induce greater bends than enzymes with guanine in this position. We suggest that the observed differences indicate different mechanisms employed by (cytosine-5) methyltransferases to stabilize the helix after the target base has flipped out.  相似文献   

19.
Shukla S  Robey RW  Bates SE  Ambudkar SV 《Biochemistry》2006,45(29):8940-8951
The human ATP-binding cassette transporter, ABCG2, confers resistance to multiple chemotherapeutic agents and also affects the bioavailability of different drugs. [(125)I]Iodoarylazidoprazosin (IAAP) and [(3)H]azidopine were used for photoaffinity labeling of ABCG2 in this study. We show here for the first time that both of these photoaffinity analogues are transport substrates for ABCG2 and that [(3)H]azidopine can also be used to photolabel both wild-type R482-ABCG2 and mutant T482-ABCG2. We further used these assays to screen for potential substrates or modulators of ABCG2 and observed that 1,4-dihydropyridines such as nicardipine and nifedipine, which are clinically used as antihypertensive agents, inhibited the photolabeling of ABCG2 with [(125)I]IAAP and [(3)H]azidopine as well as the transport of these photoaffinity analogues by ABCG2. Furthermore, [(3)H]nitrendipine and bodipy-Fl-dihydropyridine accumulation assays showed that these compounds are transported by ABCG2. These dihydropyridines also inhibited the efflux of the known ABCG2 substrates, mitoxantrone and pheophorbide-a, from ABCG2-overexpressing cells, and nicardipine was more potent in inhibiting this transport. Both nicardipine and nifedipine stimulated the ATPase activity of ABCG2, and the nifedipine-stimulated activity was inhibited by fumitremorgin C, suggesting that these agents might interact at the same site on the transporter. In addition, nontoxic concentrations of dihydropyridines increased the sensitivity of ABCG2-expressing cells to mitoxantrone by 3-5-fold. In aggregate, results from the photoaffinity labeling and efflux assays using [(125)I]IAAP and [(3)H]azidopine demonstrate that 1,4-dihydropyridines are substrates of ABCG2 and that these photolabels can be used to screen new substrates and/or inhibitors of this transporter.  相似文献   

20.
4-Methyl-5-nitrocatechol (4M5NC) monooxygenase (DntB) from Burkholderia sp. strain DNT catalyzes the second step of 2,4-dinitrotoluene degradation by converting 4M5NC to 2-hydroxy-5-methylquinone with the concomitant removal of the nitro group. DntB is a flavoprotein that has a very narrow substrate range. Here, error-prone PCR was used to create variant DntB M22L/L380I, which accepts the two new substrates 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP). At 300 μM of 4NP, the initial rate of the variant expressing M22L/L380I enzyme (39 ± 6 nmol/min/mg protein) was 10-fold higher than that of the wild-type enzyme (4 ± 2 nmol/min/mg protein). The values of kcat/Km of the purified wild-type DntB enzyme and purified variant M22L/L380I were 40 and 450 (s−1 M−1), respectively, which corroborates that the variant M22L/L380I enzyme has 11-fold-higher efficiency than the wild-type enzyme for 4NP degradation. In addition, the variant M22L/L380I enzyme has fourfold-higher activity toward 3M4NP; at 300 μM, the initial nitrite release rate of M22L/L380I enzyme was 17 ± 4 nmol/min/mg protein, while that of the wild-type enzyme was 4.4 ± 0.7 nmol/min/mg protein. Saturation mutagenesis was also used to further investigate the role of the individual amino acid residues at positions M22, L380, and M22/L380 simultaneously. Mutagenesis at the individual positions M22L and L380I did not show appreciable enhancement in 4NP activity, which suggested that these two sites should be mutated together; simultaneous saturation mutagenesis led to the identification of the variant M22S/L380V, with 20% enhanced degradation of 4NP compared to the variant M22L/L380I. This is the first report of protein engineering for nitrite removal by a flavoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号