共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During interphase, the spindle assembly factor TPX2 is compartmentalized in the nucleus where its roles remain largely uncharacterized. Recently, we found that TPX2 regulates the levels of serine 139-phosphoryated H2AX (γ-H2AX) at chromosomal breaks induced by ionizing radiation. Here, we report that TPX2 readily associates with the chromatin in the absence of ionizing radiation. Overexpression of TPX2 alters the DAPI staining pattern of interphase cells and depletion of TPX2 constitutively decreases the levels of histone H4 acetylated at lysine16 (H4K16ac) during G1-phase. Upon ionizing irradiation, this constitutive TPX2 depletion-dependent decrease in H4K16ac levels correlates with increased levels of γ-H2AX. The inversely correlated levels of H4K16ac and γ-H2AX can also be modified by altering the levels of SIRT1, herein identified as a novel protein complex partner of TPX2. Furthermore, we find that TPX2 depletion also interferes with formation of 53BP1 ionizing radiation-induced foci, known to depend on γ-H2AX and the acetylation status of H4K16. In brief, our study is the first indication of a constitutive control of TPX2 on H4K16ac levels, with potential implications for DNA damage response. 相似文献
3.
《Cell cycle (Georgetown, Tex.)》2013,12(13):1361-1365
DNA in eukaryotic organisms does not exist free in cells, but instead is present as chromatin, a complex assembly of DNA, histone proteins, and chromatin-associated proteins. Chromatin exhibits a complex hierarchy of structures, but in its simplest form it is composed of long linear arrays of nucleosomes. Nucleosomes contain 147 base pairs of DNA wrapped around a histone octamer, consisting of two copies each of histones H2A, H2B, H3 and H4, where 15-38 amino terminal residues of each histone protein extends past the DNA gyres to form histone “tails” 1. Chromatin provides a versatile regulatory platform for nearly all cellular processes that involve DNA, and improper chromatin regulation results in a wide range of diseases, including various cancers and congenital defects. One major way that chromatin regulates DNA utilization is through a wide range of post-translational modification of histones, including serine and threonine phosphorylation, lysine acetylation, methylation, ubiquitination, and sumoylation, and arginine methylation 2. Histone H4 K16 acetylation is a modification that occurs on the H4 histone tail and is one of the most frequent of the known histone modifications. We have demonstrated that this mark both disrupts formation of higher-order chromatin structure and changes the functional interaction of chromatin-associated proteins 3. Our results suggest a dual mechanism by which H4 K16 acetylation can ultimately facilitate genomic functions. 相似文献
4.
p300-mediated Acetylation of Histone H3 Lysine 56 Functions in DNA Damage Response in Mammals 总被引:1,自引:0,他引:1
Rahul K. Vempati Ranveer S. Jayani Dimple Notani Amrita Sengupta Sanjeev Galande Devyani Haldar 《The Journal of biological chemistry》2010,285(37):28553-28564
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis. 相似文献
5.
6.
Yuejing Jiang Xiaoji Cong Shangwen Jiang Ying Dong Lei Zhao Yi Zang Minjia Tan Jia Li 《基因组蛋白质组与生物信息学报(英文版)》2022,20(4):597-613
AMP-activated protein kinase(AMPK) is a conserved energy sensor that plays roles in diverse biological processes via phosphorylating various substrates. Emerging studies have demonstrated the regulatory roles of AMPK in DNA repair, but the underlying mechanisms remain to be fully understood. Herein, using mass spectrometry-based proteomic technologies, we systematically investigate the regulatory network of AMPK in DNA damage response(DDR). Our system-wide phosphoproteome study uncovers a variet... 相似文献
7.
8.
9.
Stefanie C. Huelsenbeck Anne Schorr Wynand P. Roos Johannes Huelsenbeck Christian Henninger Bernd Kaina Gerhard Fritz 《The Journal of biological chemistry》2012,287(46):38590-38599
To investigate the potency of the topoisomerase II (topo II) poisons doxorubicin and etoposide to stimulate the DNA damage response (DDR), S139 phosphorylation of histone H2AX (γH2AX) was analyzed using rat cardiomyoblast cells (H9c2). Etoposide caused a dose-dependent increase in the γH2AX level as shown by Western blotting. By contrast, the doxorubicin response was bell-shaped with high doses failing to increase H2AX phosphorylation. Identical results were obtained by immunohistochemical analysis of γH2AX focus formation, comet assay-based DNA strand break analysis, and measuring the formation of the topo II-DNA cleavable complex. At low dose, doxorubicin activated ataxia telangiectasia mutated (ATM) but not ATM and Rad3-related (ATR). Both the lipid-lowering drug lovastatin and the Rac1-specific inhibitor NSC23766 attenuated doxorubicin- and etoposide-stimulated H2AX phosphorylation, induction of DNA strand breaks, and topo II-DNA complex formation. Lovastatin and NSC23766 acted in an additive manner. They did not attenuate doxorubicin-induced increase in p-ATM and p-Chk2 levels. DDR stimulated by topo II poisons was partially blocked by inhibition of type I p21-associated kinases. DDR evoked by the topoisomerase I poison topotecan remained unaffected by lovastatin. The data show that the mechanisms involved in DDR stimulated by topo II poisons are agent-specific with anthracyclines lacking DDR-stimulating activity at high doses. Pharmacological inhibition of Rac1 signaling counteracts doxorubicin- and etoposide-stimulated DDR by disabling the formation of the topo II-DNA cleavable complex. Based on the data we suggest that Rac1-regulated mechanisms are required for DNA damage induction and subsequent activation of the DDR following treatment with topo II but not topo I poisons. 相似文献
10.
11.
12.
Annette N. D. Scharf Karin Meier Volker Seitz Elisabeth Kremmer Alexander Brehm Axel Imhof 《Molecular and cellular biology》2009,29(1):57-67
Histone modifications play an important role in shaping chromatin structure. Here, we describe the use of an in vitro chromatin assembly system from Drosophila embryo extracts to investigate the dynamic changes of histone modifications subsequent to histone deposition. In accordance with what has been observed in vivo, we find a deacetylation of the initially diacetylated isoform of histone H4, which is dependent on chromatin assembly. Immediately after deposition of the histones onto DNA, H4 is monomethylated at K20, which is required for an efficient deacetylation of the H4 molecule. H4K20 methylation-dependent dl(3)MBT association with chromatin and the identification of a dl(3)MBT-dRPD3 complex suggest that a deacetylase is specifically recruited to the monomethylated substrate through interaction with dl(3)MBT. Our data demonstrate that histone modifications are added and removed during chromatin assembly in a highly regulated manner. 相似文献
13.
The distribution of acetylated isoforms of histone H4 along Chinese hamster chromosomes has been studied by immunostaining with antibodies recognizing H4 acetylated at defined lysines in its N-terminal domain. The heterochromatic long arm of the X chromosome in both female (CHO) and male (DON) cell lines is underacetylated at three out of four lysines (5, 8, and 12). In contrast, the level of acetylation at lysine 16, which is the first to be acetylated in mammals, was similar in X chromosomes and autosomes. Labeling of the cells with bromodeoxyuridine (BrdU) to mark late-replicating chromosome domains, followed by double immunostaining with antibodies to BrdU and acetylated H4, showed a close, though not perfect, correlation between late replication and low levels of H4 acetylation. The results show that levels of histone acetylation are associated with the replication timing of defined domains on both the X chromosome and autosomes, but the exceptions we observe suggest that this link is not absolute or essential. 相似文献
15.
16.
Ubiquitylation of histone H2B and/or a component of the system that ubiquitylates H2B is required for methylation of histone H3 at lysine 4 (H3K4) in yeasts and probably in humans. In this study, the single ubiquitylation site was mapped to conserved lysine 115 of the C-terminal region of histone H2B in the single-cell model organism Tetrahymena thermophila. In strains lacking H2B ubiquitylation, H3K4 methylation was not detectably affected. As in other organisms, the E2 ubiquitin-conjugating enzyme Ubc2 and the E3 ubiquitin ligase Bre1 were required for H2B ubiquitylation. However, neither enzyme was required for H3K4 methylation. These studies argue that, in T. thermophila, the histone ubiquitylation mechanism is not required for H3K4 methylation, demonstrating that different organisms can speak different languages in the “cross-talk” among post-translational modifications on different histones. 相似文献
17.
18.
19.
20.
Prabakaran Nagarajan Zhongqi Ge Bianca Sirbu Cheryl Doughty Paula A. Agudelo Garcia Michaela Schlederer Anthony T. Annunziato David Cortez Lukas Kenner Mark R. Parthun 《PLoS genetics》2013,9(6)
Histone acetyltransferase 1 is an evolutionarily conserved type B histone acetyltransferase that is thought to be responsible for the diacetylation of newly synthesized histone H4 on lysines 5 and 12 during chromatin assembly. To understand the function of this enzyme in a complex organism, we have constructed a conditional mouse knockout model of Hat1. Murine Hat1 is essential for viability, as homozygous deletion of Hat1 results in neonatal lethality. The lungs of embryos and pups genetically deficient in Hat1 were much less mature upon histological evaluation. The neonatal lethality is due to severe defects in lung development that result in less aeration and respiratory distress. Many of the Hat1−/− neonates also display significant craniofacial defects with abnormalities in the bones of the skull and jaw. Hat1−/− mouse embryonic fibroblasts (MEFs) are defective in cell proliferation and are sensitive to DNA damaging agents. In addition, the Hat1−/− MEFs display a marked increase in genome instability. Analysis of histone dynamics at sites of replication-coupled chromatin assembly demonstrates that Hat1 is not only responsible for the acetylation of newly synthesized histone H4 but is also required to maintain the acetylation of histone H3 on lysines 9, 18, and 27 during replication-coupled chromatin assembly. 相似文献