首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 920 毫秒
1.
Neuraminidase (NA) is one of the two glycoproteins on the surface of influenza virus, which cleaves terminal sialic acid residues and facilitates the release of virions from infected cells. The recombinant NA from H5N1 influenza virus strain A/Vietnam/1203/04 was expressed in Pichia pastoris X33 as a 45 kDa protein that displayed a K m of 9.96 ± 1.26 μM with fluorogenic substrate, 2′-(4-methylumbelliferyl)-α-D-N-acetyl neuraminic acid. Partially purified NA was used for the inhibition and kinetic assays with eight flavonoid compounds and gallic acid. Among them, gallocatechin gallate (GCG) showed the best inhibition against NA with the IC50 of 8.98 ± 0.46 μM and showed a competitive inhibition pattern with K i value of 8.34 ± 0.25 μM. In molecular docking experiments, GCG displayed a binding energy of ?13.71 kcal/mol to the active site of NA and the galloyl moiety was required for NA inhibition activity.  相似文献   

2.
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.  相似文献   

3.
Influenza virus neuraminidase (NA) cleaves off sialic acid from cellular receptors of hemagglutinin (HA) to enable progeny escape from infected cells. However, NA variants (D151G) of recent human H3N2 viruses have also been reported to bind receptors on red blood cells, but the nature of these receptors and the effect of the mutation on NA activity were not established. Here, we compare the functional and structural properties of a human H3N2 NA from A/Tanzania/205/2010 and its D151G mutant, which supports HA-independent receptor binding. While the wild-type NA efficiently cleaves sialic acid from both α2-6- and α2-3-linked glycans, the mutant exhibits much reduced enzymatic activity toward both types of sialosides. Conversely, while wild-type NA shows no detectable binding to sialosides, the D151G NA exhibits avid binding with broad specificity toward α2-3 sialosides. D151G NA binds the 3′ sialyllactosamine (3′-SLN) and 6′-SLN sialosides with equilibrium dissociation constant (KD) values of 30.0 μM and 645 μM, respectively, which correspond to much higher affinities than the corresponding affinities (low mM) of HA to these glycans. Crystal structures of wild-type and mutant NAs reveal the structural basis for glycan binding in the active site by exclusively impairing the glycosidic bond hydrolysis step. The general significance of D151 among influenza virus NAs was further explored by introducing the D151G mutation into three N1 NAs and one N2 NA, which all exhibited reduced enzymatic activity and preferential binding to α2-3 sialosides. Since the enzymatic and binding activities of NAs are not routinely assessed, the potential for NA receptor binding to contribute to influenza virus biology may be underappreciated.  相似文献   

4.
5.
The interaction of influenza A viruses with the cell surface is controlled by the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). These two glycoproteins have opposing activities: HA is responsible for binding the host receptor (sialic acid) to allow infection, and NA is responsible for cleaving the receptor to facilitate virus release. Several studies have demonstrated that compatible levels of HA and NA activity are required for a virus to replicate efficiently. This is consequently of great interest for determining virus transmissibility. The concurrent role of these two proteins in receptor binding has never been directly measured. We demonstrate a novel biophysical approach based on bio-layer interferometry to measure the balance of the activities of these two proteins in real time. This technique measures virus binding to and release from a surface coated with either the human-like receptor analog α2,6-linked sialic acid or the avian-like receptor analog α2,3-linked sialic acid in both the presence and absence of NA inhibitors. Bio-layer interferometry measurements were also carried out to determine the effect of altering HA receptor affinity and NA stalk length on receptor binding.  相似文献   

6.
Infection by the influenza virus depends firstly on cell adhesion via the sialic-acid-binding viral surface protein, haemagglutinin, and secondly on the successful escape of progeny viruses from the host cell to enable the virus to spread to other cells. To achieve the latter, influenza uses another glycoprotein, the enzyme neuraminidase (NA), to cleave the sialic acid receptors from the surface of the original host cell. This paper traces the development of anti-influenza drugs, from the initial suggestion by MacFarlane Burnet in 1948 that an effective ‘competitive poison’ of the virus'' NA might be useful in controlling infection by the virus, through to the determination of the structure of NA by X-ray crystallography and the realization of Burnet''s idea with the design of NA inhibitors. A focus is the contribution of the late William Graeme Laver, FRS, to this research.  相似文献   

7.
Determination of the sensitivity of influenza viruses to neuraminidase (NA) inhibitors is presently based on assays of NA function because, unlike available cell culture methods, the results of such assays are predictive of susceptibility in vivo. At present the most widely used substrate in assays of NA function is the fluorogenic reagent 2'-O-(4-methylumbelliferyl)-N-acetylneuraminic acid (MUN). A rapid assay with improved sensitivity is required because a proportion of clinical isolates has insufficient NA to be detectable in the current fluorogenic assay, and because some mutations associated with resistance to NA inhibitors reduce the activity of the enzyme. A chemiluminescence-based assay of NA activity has been developed that uses a 1,2-dioxetane derivative of sialic acid (NA-STAR) as the substrate. When compared with the fluorogenic assay, use of the NA-STAR substrate results in a 67-fold reduction in the limit of detection of the NA assay, from 200 pM (11 fmol) NA to 3 pM (0.16 fmol) NA. A panel of isolates from phase 2 clinical studies of zanamivir, which were undetectable in the fluorogenic assay, was tested for activity using the NA-STAR substrate. Of these 12 isolates with undetectable NA activity, 10 (83%) were found to have detectable NA activity using the NA-STAR substrate. A comparison of sensitivity to zanamivir of a panel of influenza A and B viruses using the two NA assay methods has been performed. IC(50) values for zanamivir using the NA-STAR were in the range 1.0-7.5 nM and those for the fluorogenic assay in the range 1. 0-5.7 nM (n = 6). The NA-STAR assay is a highly sensitive, rapid assay of influenza virus NA activity that is applicable to monitoring the susceptibility of influenza virus clinical isolates to NA inhibitors.  相似文献   

8.
4-O-Acetylated, 7-O-acetylated, and 9-O-acetylated 4-methylumbelliferyl-alpha-N-acetyl-neuraminic acids (Neu4,5Ac2-MU, Neu5,7Ac2-MU, Neu5,9Ac2-MU) were tested as substrates of sialidases of Vibrio cholerae and of Clostridium perfringens. Both sialidases were unable to hydrolyse Neu4,5Ac2-MU. This compound at 1 mM concentration did not inhibit significantly the cleavage of Neu5Ac-MU, the best substrate tested. The 4-O-acetylated sialic acid glycoside is hydrolysed slowly by the sialidase from fowl plague virus. The relative substrate specificity, reflected in V/Km of the Vibrio cholerae sialidase is Neu5Ac-MU much greater than Neu5,7Ac2-MU approximately Neu5,9Ac2-MU and of the clostridial enzyme it is Neu5Ac-MU greater than Neu5,9Ac2-MU greater than Neu5,7Ac2-MU. The affinities of both enzymes for the side-chain O-acetylated sialic acid derivatives are higher than for Neu5Ac-MU. The artificial, well-defined substrates, described here, provide the opportunity to quantify the influence of sialic acid O-acetylation on the hydrolysis of sialoglycoconjugates without the side effects introduced by other parts of more complex glycans.  相似文献   

9.
H3N2 human influenza viruses that are resistant to horse, pig, or rabbit serum possess unique amino acid mutations in their hemagglutinin (HA) protein. To determine the molecular mechanisms of this resistance, we characterized the receptor-binding properties of these mutants by measuring their affinity for total serum protein inhibitors and for soluble receptor analogs. Pig serum-resistant variants displayed a markedly decreased affinity for total pig serum sialylglycoproteins (which contain predominantly 2-6 linkage between sialic acid and galactose residues) and for the sialyloligosaccharide 6′-sialyl(N-acetyllactosamine). These properties correlated with the substitution 186S→I in HA1. The major inhibitory activity in rabbit serum was found to be a β inhibitor with characteristics of mannose-binding lectins. Rabbit serum-resistant variants exhibited decreased sensitivity to this inhibitor due to the loss of a glycosylation sequon at positions 246 to 248 of the HA. In addition to a somewhat reduced affinity for 6′-sialyl(N-acetyllactosamine)-containing receptors, horse serum-resistant variants lost the ability to bind the viral neuraminidase-resistant 4-O-acetylated sialic acid moieties of equine α2-macroglobulin because of the mutation 145N→K/D in their HA1. These results indicate that influenza viruses become resistant to serum inhibitors because their affinity for these inhibitors is reduced. To determine whether natural inhibitors play a role in viral evolution during interspecies transmission, we compared the receptor-binding properties of H3N8 avian and equine viruses, including two strains isolated during the 1989 to 1990 equine influenza outbreak, which was caused by an avian virus in China. Avian strains bound 4-O-acetylated sialic acid residues of equine α2-macroglobulin, whereas equine strains did not. The earliest avian-like isolate from a horse influenza outbreak bound to this sialic acid with an affinity similar to that of avian viruses; a later isolate, however, displayed binding properties more similar to those of classical equine strains. These data suggest that the neuraminidase-resistant sialylglycoconjugates present in horses exert selective pressure on the receptor-binding properties of avian virus HA after its introduction into this host.Influenza A viruses possess two envelope glycoproteins:hemagglutinin (HA) and neuraminidase (NA). HA binds to cell surface sialylglycoconjugates and mediates virus attachment to target cells (19, 30). NA cleaves the α-glycosidic linkage between sialic acid and an adjacent sugar residue, facilitating elution of virus progeny from infected cells and preventing self-aggregation of the virus (1, 13). Natural sialylglycoconjugates are structurally diverse (37, 40), and the preferential recognition of distinct sialyloligosaccharides by HA and NA correlates with the host species from which the viruses are isolated (reviewed in references 19, 30, and 38; see also references 4, 6, 7, 11, and 28).The receptor-binding activity of influenza viruses can be inhibited by certain molecules present in the sera and fluid secretions of animals (see references 14 and 21 for reviews). These inhibitors are classified as α, β, and γ types based on their thermal stability, virus-neutralizing activity, and sensitivity to inactivation by NA and periodate treatments. The β inhibitors are thermolabile mannose-binding lectins that interact with the oligosaccharide moieties on viral glycoproteins. They neutralize virus by steric hindrance of HA and by activation of the complement-dependent pathway (2, 3). By contrast, the α and γ inhibitors are heat-stable sialylated glycoproteins that mimic the structure of the cellular receptors of influenza viruses and competitively block the receptor-binding sites of HA. Influenza viruses are neutralized by γ inhibitors but not by α inhibitors, which are considered to be sensitive to viral NA. However, the distinction between α and γ inhibitors is strain dependent and rather arbitrary, as described by Gottschalk et al. (14). Although inhibitors in serum or other body fluids are believed to influence the selection of influenza virus receptor variants in natural hosts, no direct experimental support for this hypothesis has been presented.A potent γ inhibitor of H2 and H3 human influenza viruses, equine α2-macroglobulin (EM), contains a Neu4,5Ac22-6Gal moiety that is insensitive to viral NA and thus resists inactivation by this enzyme (16, 24, 31). Cultivation of human H3 influenza viruses in the presence of horse serum results in the selection of variants that have a decreased affinity for the Neu5Ac2-6Gal-specific receptors due to a single amino acid substitution (226L→Q) in their HA (32, 33). One of these mutants (X31/HS strain) does not bind the Neu4,5Ac2 (4-O-acetylated sialic acid) species (25). Therefore, there are at least two mechanisms by which a virus can become resistant to the horse serum inhibitor: a change in the recognition of the type of Sia-Gal linkage, and a change in the recognition of the 4-O-acetylated sialic acid. The relative contributions of these mechanisms to the resistant phenotype are yet to be defined.We have previously shown that horse, pig, and rabbit sera all contain distinct heat-resistant inhibitors of the H3N2 human influenza virus A/Los Angeles/2/87 (LA/87), because variants resistant to these sera possess unique mutations in their HA receptor-binding regions (34). The major inhibitor in pig serum was later identified as α2-macroglobulin that contains predominantly 2-6 linkage between sialic acid and galactose (35). Gimsa et al. (12) recently showed that pig serum-resistant human and swine strains exhibit decreased affinity for human erythrocytes that had been modified to contain terminal Neu5Ac2-6Gal residues. However, the nature of the rabbit serum inhibitor and the mechanisms of influenza virus resistance to each serum inhibitor remain unknown.To understand the molecular mechanisms by which influenza viruses become resistant to horse, pig, and rabbit serum inhibitors, we compared the receptor-binding characteristics of LA/87 and its serum-resistant variants and analyzed these data in relation to the known amino acid substitutions in the HA of the mutants. We then analyzed the receptor-binding properties of viruses isolated during an equine influenza outbreak that was caused by an avian virus, in order to evaluate the influence of natural inhibitors on the evolution of virus in a new host.  相似文献   

10.
Antibodies to neuraminidase (NA), the second most abundant surface protein on influenza virus, contribute toward protection against influenza. Traditional methods to measure NA inhibiting (NI) antibody titers are not practical for routine serology. This protocol describes the enzyme-linked lectin assay (ELLA), a practical alternative method to measure NI titers that is performed in 96 well plates coated with a large glycoprotein substrate, fetuin. NA cleaves terminal sialic acids from fetuin, exposing the penultimate sugar, galactose. Peanut agglutinin (PNA) is a lectin with specificity for galactose and therefore the extent of desialylation can be quantified using a PNA-horseradish peroxidase conjugate, followed by addition of a chromogenic peroxidase substrate. The optical density that is measured is proportional to NA activity. To measure NI antibody titers, serial dilutions of sera are incubated at 37 °C O/N on fetuin-coated plates with a fixed amount of NA. The reciprocal of the highest serum dilution that results in ≥50% inhibition of NA activity is designated as the NI antibody titer. The ELLA provides a practical format for routine evaluation of human antibody responses following influenza infection or vaccination.  相似文献   

11.
The influenza A virus infects target cells through multivalent interactions of its major spike proteins, hemagglutinin (HA) and neuraminidase (NA), with the cellular receptor sialic acid (SA). HA is known to mediate the attachment of the virion to the cell, whereas NA enables the release of newly formed virions by cleaving SA from the cell. Because both proteins target the same receptor but have antagonistic functions, virus infection depends on a properly tuned balance of the kinetics of HA and NA activities for viral entry to and release from the host cell. Here, dynamic single-molecule force spectroscopy, based on scanning force microscopy, was employed to determine these bond-specific kinetics, characterized by the off rate koff, rupture length xβ and on rate kon, as well as the related free-energy barrier ΔG and the dissociation constant KD. Measurements were conducted using surface-immobilized HA and NA of the influenza A virus strain A/California/04/2009 and a novel, to our knowledge, synthetic SA-displaying receptor for functionalization of the force probe. Single-molecule force spectroscopy at force loading rates between 100 and 50,000 pN/s revealed most probable rupture forces of the protein-SA bond in the range of 10–100 pN. Using an extension of the widely applied Bell-Evans formalism by Friddle, De Yoreo, and co-workers, it is shown that HA features a smaller xβ, a larger koff and a smaller ΔG than NA. Measurements of the binding probability at increasing contact time between the scanning force microscopy force probe and the surface allow an estimation of KD, which is found to be three times as large for HA than for NA. This suggests a stronger interaction for NA-SA than for HA-SA. The biological implications in regard to virus binding to the host cell and the release of new virions from the host cell are discussed.  相似文献   

12.
13.
The fitness of oseltamivir-resistant highly pathogenic H5N1 influenza viruses has important clinical implications. We generated recombinant human A/Vietnam/1203/04 (VN; clade 1) and A/Turkey/15/06 (TK; clade 2.2) influenza viruses containing the H274Y neuraminidase (NA) mutation, which confers resistance to NA inhibitors, and compared the fitness levels of the wild-type (WT) and resistant virus pairs in ferrets. The VN-H274Y and VN-WT viruses replicated to similar titers in the upper respiratory tract (URT) and caused comparable disease signs, and none of the animals survived. On days 1 to 3 postinoculation, disease signs caused by oseltamivir-resistant TK-H274Y virus were milder than those caused by TK-WT virus, and all animals survived. We then studied fitness by using a novel approach. We coinoculated ferrets with different ratios of oseltamivir-resistant and -sensitive H5N1 viruses and measured the proportion of clones in day-6 nasal washes that contained the H274Y NA mutation. Although the proportion of VN-H274Y clones increased consistently, that of TK-H274Y virus decreased. Mutations within NA catalytic (R292K) and framework (E119A/K, I222L, H274L, and N294S) sites or near the NA enzyme active site (V116I, I117T/V, Q136H, K150N, and A250T) emerged spontaneously (without drug pressure) in both pairs of viruses. The NA substitutions I254V and E276A could exert a compensatory effect on the fitness of VN-H274Y and TK-H274Y viruses. NA enzymatic function was reduced in both drug-resistant H5N1 viruses. These results show that the H274Y NA mutation affects the fitness of two H5N1 influenza viruses differently. Our novel method of assessing viral fitness accounts for both virus-host interactions and virus-virus interactions within the host.The neuraminidase (NA) inhibitors (orally administered oseltamivir and inhaled zanamivir) are currently an important class of antiviral drugs available for the treatment of seasonal and pandemic influenza. Although administration of NA inhibitors may significantly reduce influenza virus transmission, it risks the emergence of drug-resistant variants (16, 32). The impact of drug resistance would depend on the fitness (i.e., infectivity in vitro and virulence and transmissibility in vivo) of the resistant virus. If the resistance mutation only modestly reduces the virus'' biological fitness and does not impair its replication efficiency and transmissibility, the effectiveness of antiviral treatment can be significantly impaired. The unexpected natural emergence and spread of oseltamivir-resistant variants (carrying the H274Y NA amino acid substitution) among seasonal H1N1 influenza viruses of the A/Brisbane/59/07 lineage demonstrated that drug-resistant viruses can be highly fit and transmissible in humans (11, 22, 29), although the fitness of these variants is not completely understood. They are hypothesized to have lower NA receptor affinity and more-optimal NA and hemagglutinin (HA) functional balance than do wild-type (WT) viruses (38). Fortunately, oseltamivir-resistant variants have rarely been reported to occur among the novel pandemic H1N1 influenza viruses that emerged in April 2009; therefore, initial data suggest that currently circulating wild-type viruses possibly possess greater fitness than drug-resistant viruses (45), although only retrospective epidemiological data can provide a conclusive answer. The key questions are whether the risk posed by NA inhibitor-resistant viruses can be assessed experimentally and what the most reliable approach may be.All NA inhibitor-resistant influenza viruses characterized to date have contained specific mutations in the NA molecule. Clinically derived drug-resistant viruses have carried mutations that are NA subtype specific and differ in accordance with the NA inhibitor used (12, 35). The most commonly observed mutations are H274Y and N294S in the influenza A N1 NA subtype, E119A/G/D/V and R292K in the N2 NA subtype, and R152K and D198N in influenza B viruses (35, 36). The fitness of NA inhibitor-resistant viruses has been studied in vitro and in vivo. Many groups have assessed their replicative capacity in MDCK cells, but this assay system can yield anomalous results (49), particularly in the case of low-passage clinical isolates. The mismatch between virus specificity and cellular receptors can be overcome by using cell lines engineered to express human-like α-2,6-linked sialyl cell surface receptors (MDCK-SIAT1) (15, 34) or a novel cell culture-based system that morphologically and functionally recapitulates differentiated normal human bronchial epithelial (NHBE) cells (24). Investigations in vivo typically compare replication efficiencies, clinical signs, and transmissibility levels between oseltamivir-resistant viruses and the corresponding wild-type virus. Initial studies found that NA inhibitor-resistant influenza viruses were severely compromised in vitro and in animal models (6, 17, 26) and thus led to the idea that resistant viruses will unlikely have an impact on epidemic and pandemic influenza. However, clinically derived H1N1 virus with the H274Y NA mutation (18) and reverse genetics-derived H3N2 virus with the E119V NA mutation (46) were subsequently found to possess biological fitness and transmissibility similar to those of drug-sensitive virus in direct-contact ferrets. Recent studies in a guinea pig model showed that recombinant human H3N2 influenza viruses carrying either a single E119V NA mutation or the double NA mutation E119V-I222V were transmitted efficiently by direct contact but not by aerosol (5).There is limited information about the fitness of NA inhibitor-resistant H5N1 influenza viruses. Although they are not efficiently transmitted from human to human, their pandemic potential remains a serious public health concern because of their virulence in humans (1, 4, 7). H5N1 viruses isolated from untreated patients are susceptible to the NA inhibitors oseltamivir and zanamivir (21), although oseltamivir-resistant variants with the H274Y NA mutation have been reported to occur in five patients after (9, 30) or before (41) treatment with oseltamivir. The World Health Organization reported the isolation of two oseltamivir-resistant H5N1 viruses from an Egyptian girl and her uncle (44) after oseltamivir treatment. The virus was moderately resistant and possessed an N294S NA mutation. Preliminary evidence suggests that the resistance mutation existed before transmission of the virus from birds to the patients and thus before initiation of treatment (41). We previously showed that wild-type A/Vietnam/1203/04 (H5N1) influenza virus and recombinants carrying either the H274Y or the N294S NA mutation reached comparable titers in MDCK and MDCK-SIAT1 cells and caused comparable mortality rates among BALB/c mice (48). In contrast, clinically derived A/Hanoi/30408/05 (H5N1) influenza virus with the H274Y NA mutation reproduced to lower titers than the oseltamivir-sensitive virus in the lungs of inoculated ferrets (30).In a ferret model, we compared the fitness levels of two pairs of H5N1 viruses in the absence of selective drug pressure. One virus of each pair was the wild type, while the other carried the H274Y NA mutation conferring oseltamivir resistance. The two viruses used, A/Vietnam/1203/04 (HA clade 1) and A/Turkey/15/06 (HA clade 2.2), differ in their pathogenicity to ferrets. Virus fitness was evaluated by two approaches. Using the traditional approach, we compared clinical disease signs, relative inactivity indexes, weight and temperature changes, and virus replication levels in the upper respiratory tract (URT). We then used a novel competitive fitness approach in which we genetically analyzed individual virus clones after coinfection of ferrets with mixtures of oseltamivir-sensitive and -resistant H5N1 viruses; thus, we determined virus-virus interactions within the host. We observed no difference between the resistant and sensitive virus of each pair in clinical signs or virus replication in the URT; however, analysis of virus-virus interactions within the host showed that the H274Y NA mutation affected the fitness of the two viruses differently. The oseltamivir-resistant A/Vietnam/1203/04-like virus outgrew its wild-type counterpart, while the oseltamivir-resistant A/Turkey/15/06-like virus showed less fitness than its wild-type counterpart.  相似文献   

14.
Influenza A viruses possess two virion surface proteins, hemagglutinin (HA) and neuraminidase (NA). The HA binds to sialyloligosaccharide viral receptors, while the NA removes sialic acids from the host cell and viral sialyloligosaccarides. Alterations of the HA occur during adaptation of influenza viruses to new host species, as in the 1957 and 1968 influenza pandemics. To gain a better understanding of the contributions of the HA and possibly the NA to this process, we generated cell lines expressing reduced levels of the influenza virus receptor determinant, sialic acid, by selecting Madin-Darby canine kidney cells resistant to a lectin specific for sialic acid linked to galactose by alpha(2-3) or alpha(2-6) linkages. One of these cell lines had less than 1/10 as much N-acetylneuraminic acid as its parent cell line. When serially passaged in this cell line, human H3N2 viruses lost sialidase activity due to a large internal deletion in the NA gene, without alteration of the HA gene. These findings indicate that NA mutations can contribute to the adaptation of influenza A virus to new host environments and hence may play a role in the transmission of virus across species.  相似文献   

15.
Influenza A viruses possess two glycoprotein spikes on the virion surface: hemagglutinin (HA), which binds to oligosaccharides containing terminal sialic acid, and neuraminidase (NA), which removes terminal sialic acid from oligosaccharides. Hence, the interplay between these receptor-binding and receptor-destroying functions assumes major importance in viral replication. In contrast to the well-characterized role of HA in host range restriction of influenza viruses, there is only limited information on the role of NA substrate specificity in viral replication among different animal species. We therefore investigated the substrate specificities of NA for linkages between N-acetyl sialic acid and galactose (NeuAcalpha2-3Gal and NeuAcalpha2-6Gal) and for different molecular species of sialic acids (N-acetyl and N-glycolyl sialic acids) in influenza A viruses isolated from human, avian, and pig hosts. Substrate specificity assays showed that all viruses had similar specificities for NeuAcalpha2-3Gal, while the activities for NeuAcalpha2-6Gal ranged from marginal, as represented by avian and early N2 human viruses, to high (although only one-third the activity for NeuAcalpha2-3Gal), as represented by swine and more recent N2 human viruses. Using site-specific mutagenesis, we identified in the earliest human virus with a detectable increase in NeuAcalpha2-6Gal specificity a change at position 275 (from isoleucine to valine) that enhanced the specificity for this substrate. Valine at position 275 was maintained in all later human viruses as well as swine viruses. A similar examination of N-glycolylneuraminic acid (NeuGc) specificity showed that avian viruses and most human viruses had low to moderate activity for this substrate, with the exception of most human viruses isolated between 1967 and 1969, whose NeuGc specificity was as high as that of swine viruses. The amino acid at position 431 was found to determine the level of NeuGc specificity of NA: lysine conferred high NeuGc specificity, while proline, glutamine, and glutamic acid were associated with lower NeuGc specificity. Both residues 275 and 431 lie close to the enzymatic active site but are not directly involved in the reaction mechanism. This finding suggests that the adaptation of NA to different substrates occurs by a mechanism of amino acid substitutions that subtly alter the conformation of NA in and around the active site to facilitate the binding of different species of sialic acid.  相似文献   

16.
To determine the relative fitness of oseltamivir-resistant strains compared to susceptible wild-type viruses, we combined mathematical modeling and statistical techniques with a novel in vivo “competitive-mixtures” experimental model. Ferrets were coinfected with either pure populations (100% susceptible wild-type or 100% oseltamivir-resistant mutant virus) or mixed populations of wild-type and oseltamivir-resistant influenza viruses (80%:20%, 50%:50%, and 20%:80%) at equivalent infectivity titers, and the changes in the relative proportions of those two viruses were monitored over the course of the infection during within-host and over host-to-host transmission events in a ferret contact model. Coinfection of ferrets with mixtures of an oseltamivir-resistant R292K mutant A(H3N2) virus and a R292 oseltamivir-susceptible wild-type virus demonstrated that the R292K mutant virus was rapidly outgrown by the R292 wild-type virus in artificially infected donor ferrets and did not transmit to any of the recipient ferrets. The competitive-mixtures model was also used to investigate the fitness of the seasonal A(H1N1) oseltamivir-resistant H274Y mutant and showed that within infected ferrets the H274Y mutant virus was marginally outgrown by the wild-type strain but demonstrated equivalent transmissibility between ferrets. This novel in vivo experimental method and accompanying mathematical analysis provide greater insight into the relative fitness, both within the host and between hosts, of two different influenza virus strains compared to more traditional methods that infect ferrets with only pure populations of viruses. Our statistical inferences are essential for the development of the next generation of mathematical models of the emergence and spread of oseltamivir-resistant influenza in human populations.The neuraminidase (NA) inhibitors are a class of influenza antiviral drugs that are specifically designed to inhibit the enzymatic function of the NA, thereby preventing normal viral replication. Since 1999, two NA inhibitors (NAIs), oseltamivir (Tamiflu) and zanamivir (Relenza), have been shown to be effective for the treatment and prophylaxis of patients infected with not only seasonal influenza, but also highly pathogenic A(H5N1) and the newly emerged A(H1N1) pandemic virus. Prior to 2007, resistance to this class of drugs was considered relatively uncommon, particularly in comparison with the other class of influenza antivirals, the adamantanes, which readily select for viral resistance in treated patients. During early clinical trials, oseltamivir resistance was detected in only 1 to 2% of adults (14) and 5 to 6% of children (33) under treatment, although later studies detected resistance in up to 18% of oseltamivir-treated children (16). In contrast, resistance following zanamivir treatment is rare, with only one reported case observed in an immunocompromised patient (6). Influenza viruses that develop resistance to these drugs typically contain mutations in the NA which, either directly or indirectly, alter the shape of the NA enzymatic site, thereby reducing the ability of the drugs to bind to this specific pocket. One of the most commonly observed mutations in oseltamivir-resistant A(H3N2) viruses is an arginine-to-lysine mutation at residue 292 (R292K) of the NA, while the predominant NA mutation in oseltamivir-resistant A(H1N1) viruses is a histidine-to-tyrosine mutation at residue 274 (H274Y) (N2 NA amino acid numbering, equivalent to residue 275 based on N1 numbering). Both of these mutations have an indirect impact on drug binding, as they affect the ability of the glutamic acid residue at position 276 to reorientate, as required for slow binding by oseltamivir (3). Many mutations that cause NAI resistance also cause reduced NA enzyme activity and, consequently, can compromise viral fitness.Previous studies have demonstrated that viruses with an R292K NA mutation demonstrated compromised growth in vitro (36) and in ferrets were significantly less infectious and did not transmit (9). The replication and transmission fitness of the H274Y mutation has also been studied previously. An H274Y mutant A(H1N1) strain isolated from a patient under oseltamivir treatment demonstrated compromised growth in cell culture compared to a wild-type (WT) virus (13), although a strain carrying the same mutation selected in vitro was found to replicate as well as the wild type (32). The infectivity and transmissibility of an H274Y mutant were found to be restricted in ferrets (13), although a second study demonstrated that transmission of the mutant virus between ferrets was possible, but required a greater viral dose of the mutant compared to the wild type (10). These results suggest that resistant virus variants with the same NA mutation may differ in replication or transmission fitness depending on other viral components. Nevertheless, based on these data and the viral fitness of other resistant mutants, it was believed that NAI-resistant viruses were unlikely to spread throughout the community due to their compromised viral fitness in the absence of drug selective pressure. This was proven incorrect during the Northern Hemisphere 2007-2008 influenza season, when large numbers of oseltamivir-resistant seasonal A(H1N1) viruses with an H274Y mutation were detected in patients who had not been treated with oseltamivir (4, 24). The mutant strain continued to spread to the Southern Hemisphere, such that by late 2008 virtually all circulating seasonal A(H1N1) viruses were oseltamivir resistant (11). The rapid global spread of this strain clearly suggested that the oseltamivir-resistant seasonal A(H1N1) virus had fitness equivalent to or greater than that of the previous oseltamivir-sensitive A(H1N1) strain. The reasons for enhanced viral fitness in this strain, when previous studies demonstrated that the acquisition of an H274Y mutation led to reduced viral fitness, remain unclear but probably involve compensatory mutations or reassortment events which may have improved the hemagglutinin (HA)/NA balance, allowing efficient transmission (5, 26).Experimental methods have been developed to assess the relative fitness of NAI-resistant strains compared with respective wild-type viruses, both in vitro and in vivo. Ferrets have been considered the most appropriate model animal for influenza research, and fitness studies have assessed variables such as minimum dose required to achieve infection, duration of viral shedding, and levels of viral load to allow comparisons between viruses. The guinea pig model has also been previously used to assess the viral fitness of influenza viruses, particularly in comparing the transmissibility of strains via either the contact or aerosol route (2). As an alternative to these traditional approaches, we have investigated a methodology that involves coinfection of ferrets with a mixture of two influenza viruses. Daily monitoring of changes in the relative proportion of those viruses over the course of the infection allows determination of the relative replication fitness of the viruses. Monitoring of recipient ferrets exposed to the infected ferrets enables the relative transmissibility of the viruses (henceforth, the relative transmission fitness) to be determined. In this study, the “competitive-mixtures” methodology was used to assess the relative replication and transmission fitness of an oseltamivir-resistant R292K mutant A(H3N2) virus compared with an oseltamivir-sensitive A(H3N2) wild-type strain and also to asses the relative replication and transmission fitness of an oseltamivir-resistant H274Y seasonal A(H1N1) mutant compared with an oseltamivir-sensitive A(H1N1) wild-type strain. Quantitative estimates for the replication fitness of mutant viruses were determined using a simple mathematical model of within-host viral replication and mixed-effects statistical tests. Transmission fitness was evaluated by application of a graphical technique that demonstrated the relationship between the proportion of mutant virus in the infectee ferrets as a function of the proportion of mutant virus in the infector ferrets.Inferences drawn from the statistical analyses presented here are essential for the refinement of existing mathematical models that simulate the spread of influenza in the human population and model the deployment of antiviral agents. These models are designed to assess the likely impact of different antiviral agent deployment strategies to control pandemic influenza (18, 21, 35). At present, data on the probability of emergence of NAI-resistant strains, the relative transmission fitness of these strains, and the probability of an individual''s infection reverting to an NAI-sensitive strain in the absence of ongoing selective pressure are severely limited. In consequence, human population-level models of influenza spread must make gross assumptions on the likely characteristics of NAI-resistant strains. Data such as those presented here will be used to inform new models of drug deployment and result in improved pandemic policy advice (20, 23).  相似文献   

17.
In preparing for the threat of a pandemic of avian H5N1 influenza virus, we need to consider the significant delay (4 to 6 months) necessary to produce a strain-matched vaccine. As some degree of cross-reactivity between seasonal influenza vaccines and H5N1 virus has been reported, this was further explored in the ferret model to determine the targets of protective immunity. Ferrets were vaccinated with two intramuscular inoculations of trivalent inactivated split influenza vaccine or subcomponent vaccines, with and without adjuvant, and later challenged with a lethal dose of A/Vietnam/1203/2004 (H5N1) influenza virus. We confirmed that vaccination with seasonal influenza vaccine afforded partial protection against lethal H5N1 challenge and showed that use of either AlPO4 or Iscomatrix adjuvant with the vaccine resulted in complete protection against disease and death. The protection was due exclusively to the H1N1 vaccine component, and although the hemagglutinin contributed to protection, the dominant protective response was targeted toward the neuraminidase (NA) and correlated with sialic acid cleavage-inhibiting antibody titers. Purified heterologous NA formulated with Iscomatrix adjuvant was also protective. These results suggest that adjuvanted seasonal trivalent vaccine could be used as an interim measure to decrease morbidity and mortality from H5N1 prior to the availability of a specific vaccine. The data also highlight that an inducer of cross-protective immunity is the NA, a protein whose levels are not normally monitored in vaccines and whose capacity to induce immunity in recipients is not normally assessed.  相似文献   

18.
The sphingolipid activator protein 1 (SAP-1) increases the rate of hydrolysis of sphingolipids in the lysosome by apparently bringing together the substrate and the corresponding hydrolytic enzyme. This implies specific recognition of both the substrate and enzyme by SAP-1. However, binding domains in SAP-1 and recognition mechanisms involved are unknown. Amino acid sequence comparison of SAP-1 with influenza virus neuraminidase (EC 3.2.1.18, FLU NA) indicates that functional amino acid residues in or near the sialic acid binding site of FLU NA are also found at equivalent positions in the first 48 N-terminal amino acids of SAP-1. This region of homology allows to propose folding of the SAP-1 polypeptide chain by comparison with known crystallographic structure of FLU NA and identify a potential domain for lysosomal enzyme recognition through sialic acid binding. There is also a region of 10 amino acid residues near the C-terminal end of SAP-1 which has a strong propensity to form an alpha-helix with amphiphilic properties of lipid-binding helices. This domain in SAP-1 is probably responsible for the lipid(substrate)-binding function of SAP-1.  相似文献   

19.
The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(alpha2-6) galactose(beta1-4)glucose or sialic acid(alpha2-3)galactose(beta1-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.  相似文献   

20.
The influenza virus neuraminidase (NA) is essential for viral infection and offers a potential target for antiviral drug development. We prepared a carbocyclic sialic acid analogue, potentially able to inhibit NA. Its structure is an analogue of the transition-state of the reaction catalysed by NA. As starting material, quinic acid was selected owing to its ready availability and its stereochemical feature suitable for the target structure. The quinic acid was first converted in the shikimic acid; then two of the three hydroxyl functions of this product were selectively functionalised to obtain the target molecule (3R,4S,5R)-4-acetamido-3-guanidino-5-hydroxycyclohex-1-ene-1-carboxylic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号