首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Important support functions, including promotion of tumor growth, angiogenesis, and invasion, have been attributed to the different cell types populating the tumor stroma, i.e., endothelial cells, cancer-associated fibroblasts, pericytes, and infiltrating inflammatory cells. Fibroblasts have long been recognized inside carcinomas and are increasingly implicated as functional participants. The stroma is prominent in cervical carcinoma, and distinguishable from nonmalignant tissue, suggestive of altered (tumor-promoting) functions. We postulated that pharmacological targeting of putative stromal support functions, in particular those of cancer-associated fibroblasts, could have therapeutic utility, and sought to assess the possibility in a pre-clinical setting.

Methods and Findings

We used a genetically engineered mouse model of cervical carcinogenesis to investigate platelet-derived growth factor (PDGF) receptor signaling in cancer-associated fibroblasts and pericytes. Pharmacological blockade of PDGF receptor signaling with the clinically approved kinase inhibitor imatinib slowed progression of premalignant cervical lesions in this model, and impaired the growth of preexisting invasive carcinomas. Inhibition of stromal PDGF receptors reduced proliferation and angiogenesis in cervical lesions through a mechanism involving suppression of expression of the angiogenic factor fibroblast growth factor 2 (FGF-2) and the epithelial cell growth factor FGF-7 by cancer-associated fibroblasts. Treatment with neutralizing antibodies to the PDGF receptors recapitulated these effects. A ligand trap for the FGFs impaired the angiogenic phenotype similarly to imatinib. Thus PDGF ligands expressed by cancerous epithelia evidently stimulate PDGFR-expressing stroma to up-regulate FGFs, promoting angiogenesis and epithelial proliferation, elements of a multicellular signaling network that elicits functional capabilities in the tumor microenvironment.

Conclusions

This study illustrates the therapeutic benefits in a mouse model of human cervical cancer of mechanism-based targeting of the stroma, in particular cancer-associated fibroblasts. Drugs aimed at stromal fibroblast signals and effector functions may prove complementary to conventional treatments targeting the overt cancer cells for a range of solid tumors, possibly including cervical carcinoma, the second most common lethal malignancy in women worldwide, for which management remains poor.  相似文献   

3.
Glandular tumors arising in epithelial cells comprise the majority of solid human cancers. Glands are supported by stroma, which is activated in the proximity of a tumor. Activated stroma is often characterized by the molecular expression of α-smooth muscle actin (α-SMA) within fibroblasts. However, the precise spatial and temporal evolution of chemical changes in fibroblasts upon epithelial tumor signaling is poorly understood. Here we report a label-free method to characterize fibroblast changes by using Fourier transform infrared spectroscopic imaging and comparing spectra with α-SMA expression in primary normal human fibroblasts. We recorded the fibroblast activation process by spectroscopic imaging using increasingly tissue-like conditions: 1), stimulation with the growth factor TGFβ1; 2), coculture with MCF-7 human breast cancerous epithelial cells in Transwell coculture; and 3), coculture with MCF-7 in three-dimensional cell culture. Finally, we compared the spectral signatures of stromal transformation with normal and malignant human breast tissue biopsies. The results indicate that this approach reveals temporally complex spectral changes and thus provides a richer assessment than simple molecular imaging based on α-SMA expression. Some changes are conserved across culture conditions and in human tissue, providing a label-free method to monitor stromal transformations.  相似文献   

4.
5.
Carcinoma-associated fibroblasts play a key role in tumorigenesis and metastasis by providing a tumor-supportive microenvironment. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells induces differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) to carcinoma-associated fibroblasts expressing α-smooth muscle actin, vascular endothelial growth factor, and stromal cell-derived factor-1. A549 conditioned medium-induced differentiation of hASCs to carcinoma-associated fibroblasts was completely abrogated by treatment of hASCs with Ki16425, a lysophosphatidic acid receptor antagonist, or knockdown of lysophosphatidic acid receptor 1 (LPA1) expression in hASCs with small interfering RNA or lentiviral short hairpin RNA. Using a murine xenograft transplantation model of A549 cells, we showed that co-transplantation of hASCs with A549 cells stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts in vivo. Knockdown of LPA1 expression in hASCs abrogated hASCs-stimulated growth of A549 xenograft tumor, angiogenesis, and differentiation of hASCs to carcinoma-associated fibroblasts. Moreover, A549 conditioned medium-treated hASCs stimulated tube formation of human umbilical vein endothelial cells by LPA1-dependent secretion of vascular endothelial growth factor. These results suggest that A549 cells induce in vivo differentiation of hASCs to carcinoma-associated fibroblasts, which play a key role in tumor angiogenesis within tumor microenvironment, through an LPA-LPA1-mediated paracrine mechanism.  相似文献   

6.
In HER2-overexpressing mammary epithelial cells, transforming growth factor β (TGF-β) activated phosphatidylinositol-3 kinase (PI3K)/Akt and enhanced survival and migration. Treatment with TGF-β or expression of an activated TGF-β type I receptor (Alk5 with the mutation T204D [Alk5T204D]) induced phosphorylation of TACE/ADAM17 and its translocation to the cell surface, resulting in increased secretion of TGF-α, amphiregulin, and heregulin. In turn, these ligands enhanced the association of p85 with ErbB3 and activated PI3K/Akt. RNA interference of TACE or ErbB3 prevented TGF-β-induced activation of Akt and cell invasiveness. Treatment with TGF-β or expression of Alk5T204D in HER2-overexpressing cells reduced their sensitivity to the HER2 antibody trastuzumab. Inhibition of Alk5, PI3K, TACE, or ErbB3 restored sensitivity to trastuzumab. A gene signature induced by Alk5T204D expression correlated with poor clinical outcomes in patients with invasive breast cancer. These results suggest that by acting on ErbB ligand shedding, an excess of TGF-β may result in (i) conditioning of the tumor microenvironment with growth factors that can engage adjacent stromal and endothelial cells; (ii) potentiation of signaling downstream ErbB receptors, thus contributing to tumor progression and resistance to anti-HER2 therapies; and (iii) poor clinical outcomes in women with breast cancer.  相似文献   

7.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

8.
9.
Myofibroblasts, also known as activated fibroblasts, constitute an important niche for tumor development through the promotion of angiogenesis. However, the mechanism of stromal fibroblast activation in tumor tissues has not been fully understood. A gastric cancer mouse model (Gan mice) was recently constructed by simultaneous activation of prostaglandin (PG) E2 and Wnt signaling in the gastric mucosa. Because both the PGE2 and Wnt pathways play a role in human gastric tumorigenesis, the Gan mouse model therefore recapitulates the molecular etiology of human gastric cancer. Microvessel density increased significantly in Gan mouse tumors. Moreover, the expression of vascular endothelial growth factor A (VEGFA) was predominantly induced in the stromal cells of gastric tumors. Immunohistochemistry suggested that VEGFA-expressing cells in the stroma were alpha-smooth muscle actin-positive myofibroblasts. Bone marrow transplantation experiments indicated that a subset of gastric myofibroblasts is derived from bone marrow. Importantly, the alpha-smooth muscle actin index in cultured fibroblasts increased significantly when stimulated with the conditioned medium of Gan mouse tumor cells, indicating that gastric tumor cells activate stromal fibroblasts. Furthermore, conditioned medium of Gan mouse tumor cells induced VEGFA expression both in embryonic and gastric fibroblasts, which further accelerated the tube formation of human umbilical vein endothelial cells in vitro. Notably, stimulation of fibroblasts with PGE2 and/or Wnt1 did not induce VEGFA expression, thus suggesting that factors secondarily induced by PGE2 and Wnt signaling in the tumor cells are responsible for activation of stromal fibroblasts. Such tumor cell-derived factors may therefore be an effective target for chemoprevention against gastric cancer.  相似文献   

10.
11.
Epithelial and stromal tissues are components of the tumor microenvironment and play a major role in tumor initiation and progression. Distinguishing stroma from epithelial tissues is critically important for spatial characterization of the tumor microenvironment. Here, we propose BrcaSeg, an image analysis pipeline based on a convolutional neural network (CNN) model to classify epithelial and stromal regions in whole-slide hematoxylin and eosin (H&E) stained histopathological images. The CNN model is trained using well-annotated breast cancer tissue microarrays and validated with images from The Cancer Genome Atlas (TCGA) Program. BrcaSeg achieves a classification accuracy of 91.02%, which outperforms other state-of-the-art methods. Using this model, we generate pixel-level epithelial/stromal tissue maps for 1000 TCGA breast cancer slide images that are paired with gene expression data. We subsequently estimate the epithelial and stromal ratios and perform correlation analysis to model the relationship between gene expression and tissue ratios. Gene Ontology (GO) enrichment analyses of genes that are highly correlated with tissue ratios suggest that the same tissue is associated with similar biological processes in different breast cancer subtypes, whereas each subtype also has its own idiosyncratic biological processes governing the development of these tissues. Taken all together, our approach can lead to new insights in exploring relationships between image-based phenotypes and their underlying genomic events and biological processes for all types of solid tumors. BrcaSeg can be accessed at https://github.com/Serian1992/ImgBio.  相似文献   

12.
13.
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties.  相似文献   

14.
Comment on: Witkiewicz AK, et al. Cell Cycle 2012; 1108–1117Investment in the post-genomic molecular dissection of breast cancer has resulted in an emphasis on prognostic and predictive markers, signatures derived to stratify the disease and the drive to generate targeted therapies. However, there remain significant challenges to individualize therapeutic targeting and improve the prognosis for the thousands of women who die each year from the heterogeneous range of breast cancers. This is particularly true for poor prognosis “triple-negative” breast cancers (TNBC), most prevalent in young and African American women, lacking the established therapeutic targets of estrogen receptor, progesterone receptor or HER2.Research has largely focused on the epithelial component of breast cancer rather than the tumor microenvironment, now recognized as a key hallmark of cancer.1 In vitro, animal models and observations on clinical material2 are now moving to consider physiological mechanisms by which stromal cells may influence breast epithelial and carcinoma cells.Witkiewicz et al.3 build on published evidence from the Lisanti group that cancer cells secrete hydrogen peroxide, initiating oxidative stress and aerobic glycolysis in tumor stroma, with L-lactate secretion from cancer-associated fibroblasts fueling oxidative mitochondrial metabolism in epithelial cancer cells: the “reverse Warburg effect.”They demonstrate stromal monocarboxylate transporter 4 (MCT4), detected by immunohistochemistry, as a functional marker of stromal hypoxia, oxidative stress, aerobic glycolysis and L-lactate efflux. High stromal MCT4 expression (but, critically, not epithelial MCT4) was associated with poor prognosis in TNBC patients. Combined high stromal MCT4 and loss of stromal caveolin-1 identify particularly poor prognostic TNBC.Thus, development of cancer may not lie solely in genetic or epigenetic epithelial changes, but with acquired functional changes in the stromal infrastructure of the breast. This supports the concept of epithelial malignant changes consequent with ecological and evolutionary opportunity.4 The “parasitic” character of tumor cells feeding off stromal cells highlights the need to seriously consider both ecological and biophysical concepts.5 We need to think beyond “intraspecific” competition among clonal subpopulations in the tumor and to consider tumor and stromal cells as distinct populations in a cancer ecosystem, with a range of “interspecific” competitive, exploitative and opportunistic interactions. Furthermore, the reverse Warburg effect relies on the inefficient diffusion of nutrients from stromal cells to tumor cells in a complex three-dimensional space. The extracellular space is brought to the foreground, and physical properties of molecular transport in this space may have as much impact on tumor growth as intricate cellular processes. The importance of the spatial arena is also apparent when contrasting the reverse Warburg effect with angiogenesis. In the former, tumor cells are exploiting their local environment, which will presumably be of limited yield, whereas angiogenesis taps the nutrients of the entire organism—­an effectively infinite reservoir for a growing tumor. In the reverse Warburg effect, a balance of ecological and biophysical factors underpins the sustainability of this mode of cancer nutrition. A two-compartment model coupling oxidative epithelial cells with glycolytic fibroblasts reflects increased expression of hypoxia-associated genes as a component part of prognostic stromal signatures.6 Further evidence of stromal/epithelial interaction comes from evidence that the effects of radiation on normal breast epithelium in vivo is at least partially dependent on the stromal context.7Manipulation of the tumor microenvironment to promote an anticancer phenotype challenges the cancer treatment paradigm. The long-established antidiabetes biguanide drugs offer a low-toxicity opportunity to disrupt the reverse Warburg effect. Metformin may target the cancer mitochondria3 and phenformin induce stromal sclerosis, at least in a breast cancer xenograft model,8 in addition to in vivo AMPK pathway and insulin-mediated systemic effects of metformin in women with breast cancer.9 The reverse Warburg effect challenges our therapeutic focus on breast cancer epithelium. Stromal MCT4 expression with caveolin-1 loss identifies poor prognostic TNBC patients and emphasizes the roles of the tumor microenvironment and ecological interactions between distinct populations of cells. The challenges now revolve around therapeutic manipulation of the stroma/epithelial interaction and the extracellular space, and testing these concepts in pre-invasive and metastatic settings where stromal changes may provide tissue niches of evolutionary opportunity for malignant cells.  相似文献   

15.
The oncogene microRNA-21 (miRNA; miR-21) is overexpressed in most solid organ tumours; however, a recent examination of stage II colorectal cancer (CRC) specimens suggests this may be a stromal phenomenon and not only a feature of cancer cells. In vitro and in vivo studies show that miR-21 has potent pro-metastatic effects in various malignant carcinoma cell lines. The tumour microenvironment has also been identified as a key actor during the metastatic cascade; however to date the significance of deregulated miR-21 expression within the cancer-associated stroma has not been examined. In the present study, a quantitative RT-PCR-based analysis of laser microdissected tissue confirmed that miR-21 expression is associated with a four-fold mean increase in CRC stroma compared with normal tissue. In situ hybridisation using locked nucleic acid probes localised miR-21 expression predominantly to fibroblasts within tumour-associated stroma. To study the molecular and biological impact of deregulated stromal miR-21 in CRC, stable ectopic expression was induced in immortalised fibroblasts. This resulted in upregulated α-smooth muscle actin expression implying miR-21 overexpression is driving the fibroblast-to-myofibroblast transdifferentiation. Conditioned medium from miR-21-overexpressing fibroblasts protected CRC cells from oxaliplatin-induced apoptosis and increased their proliferative capacity. 3D organotypic co-cultures containing fibroblasts and CRC cells revealed that ectopic stromal miR-21 expression was associated with increased epithelial invasiveness. Reversion-inducing cysteine-rich protein with kazal motifs, an inhibitor of matrix-remodelling enzyme MMP2, was significantly downregulated by ectopic miR-21 in established and primary colorectal fibroblasts with a reciprocal rise in MMP2 activity. Inhibition of MMP2 abrogated the invasion-promoting effects of ectopic miR-21. This data, which characterises a novel pro-metastatic mechanism mediated by miR-21 in the CRC stroma, highlights the importance of miRNA deregulation within the tumour microenvironment and identifies a potential application for stromal miRNAs as biomarkers in cancer.  相似文献   

16.
17.
Cancer-associated fibroblasts (CAFs) are the most prominent cell type within the tumor stroma of many cancers, in particular breast carcinoma, and their prominent presence is often associated with poor prognosis1,2. CAFs are an activated subpopulation of stromal fibroblasts, many of which express the myofibroblast marker α-SMA3. CAFs originate from local tissue fibroblasts as well as from bone marrow-derived cells recruited into the developing tumor and adopt a CAF phenotype under the influence of the tumor microenvironment4. CAFs were shown to facilitate tumor initiation, growth and progression through signaling that promotes tumor cell proliferation, angiogenesis, and invasion5-8. We demonstrated that CAFs enhance tumor growth by mediating tumor-promoting inflammation, starting at the earliest pre-neoplastic stages9. Despite increasing evidence of the key role CAFs play in facilitating tumor growth, studying CAFs has been an on-going challenge due to the lack of CAF-specific markers and the vast heterogeneity of these cells, with many subtypes co-existing in the tumor microenvironment10. Moreover, studying fibroblasts in vitro is hindered by the fact that their gene expression profile is often altered in tissue culture11,12 . To address this problem and to allow unbiased gene expression profiling of fibroblasts from fresh mouse and human tissues, we developed a method based on previous protocols for Fluorescence-Activated Cell Sorting (FACS)13,14. Our approach relies on utilizing PDGFRα as a surface marker to isolate fibroblasts from fresh mouse and human tissue. PDGFRα is abundantly expressed by both normal fibroblasts and CAFs9,15 . This method allows isolation of pure populations of normal fibroblasts and CAFs, including, but not restricted to α-SMA+ activated myofibroblasts. Isolated fibroblasts can then be used for characterization and comparison of the evolution of gene expression that occurs in CAFs during tumorigenesis. Indeed, we and others reported expression profiling of fibroblasts isolated by cell sorting16. This protocol was successfully performed to isolate and profile highly enriched populations of fibroblasts from skin, mammary, pancreas and lung tissues. Moreover, our method also allows culturing of sorted cells, in order to perform functional experiments and to avoid contamination by tumor cells, which is often a big obstacle when trying to culture CAFs.  相似文献   

18.
It is unclear whether the cellular origin of various forms of pancreatic cancer involves transformation or transdifferentiation of different target cells or whether tumors arise from common precursors, with tumor types determined by the specific genetic alterations. Previous studies suggested that pancreatic ductal carcinomas might be induced by polyoma middle T antigen (PyMT) expressed in non-ductal cells. To ask whether PyMT transforms and transdifferentiates endocrine cells toward exocrine tumor phenotypes, we generated transgenic mice that carry tetracycline-inducible PyMT and a linked luciferase reporter. Induction of PyMT in β cells causes β-cell hyperplastic lesions that do not progress to malignant neoplasms. When PyMT is de-induced, β cell proliferation and growth cease; however, regression does not occur, suggesting that continued production of PyMT is not required to maintain the viable expanded β cell population. In contrast, induction of PyMT in early pancreatic progenitor cells under the control of Pdx1 produces acinar cell carcinomas and β-cell hyperplasia. The survival of acinar tumor cells is dependent on continued expression of PyMT. Our findings indicate that PyMT can induce exocrine tumors from pancreatic progenitor cells, but cells in the β cell lineage are not transdifferentiated toward exocrine cell types by PyMT; instead, they undergo oncogene-dependent hyperplastic growth, but do not require PyMT for survival.  相似文献   

19.
20.
FGF-2 and VEGF are potent angiogenesis inducers in vivo and in vitro. Here we show that FGF-2 induces VEGF expression in vascular endothelial cells through autocrine and paracrine mechanisms. Addition of recombinant FGF-2 to cultured endothelial cells or upregulation of endogenous FGF-2 results in increased VEGF expression. Neutralizing monoclonal antibody to VEGF inhibits FGF-2–induced endothelial cell proliferation. Endogenous 18-kD FGF-2 production upregulates VEGF expression through extracellular interaction with cell membrane receptors; high-Mr FGF-2 (22–24-kD) acts via intracellular mechanism(s). During angiogenesis induced by FGF-2 in the mouse cornea, the endothelial cells of forming capillaries express VEGF mRNA and protein. Systemic administration of neutralizing VEGF antibody dramatically reduces FGF-2-induced angiogenesis. Because occasional fibroblasts or other cell types present in the corneal stroma show no significant expression of VEGF mRNA, these findings demonstrate that endothelial cell-derived VEGF is an important autocrine mediator of FGF-2-induced angiogenesis. Thus, angiogenesis in vivo can be modulated by a novel mechanism that involves the autocrine action of vascular endothelial cell-derived FGF-2 and VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号