首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern, which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are compared against existing algorithms for both reference based compression (CRAM, Goby) and non-reference based compression (DSRC, BAM) and other recently published competition entries (Quip, SCALCE). The tools are shown to be the new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.  相似文献   

3.
COHCAP (City of Hope CpG Island Analysis Pipeline) is an algorithm to analyze single-nucleotide resolution DNA methylation data produced by either an Illumina methylation array or targeted bisulfite sequencing. The goal of the COHCAP algorithm is to identify CpG islands that show a consistent pattern of methylation among CpG sites. COHCAP is currently the only DNA methylation package that provides integration with gene expression data to identify a subset of CpG islands that are most likely to regulate downstream gene expression, and it can generate lists of differentially methylated CpG islands with ∼50% concordance with gene expression from both cell line data and heterogeneous patient data. For example, this article describes known breast cancer biomarkers (such as estrogen receptor) with a negative correlation between DNA methylation and gene expression. COHCAP also provides visualization for quality control metrics, regions of differential methylation and correlation between methylation and gene expression. This software is freely available at https://sourceforge.net/projects/cohcap/.  相似文献   

4.
The big data storage is a challenge in a post genome era. Hence, there is a need for high performance computing solutions for managing large genomic data. Therefore, it is of interest to describe a parallel-computing approach using message-passing library for distributing the different compression stages in clusters. The genomic compression helps to reduce the on disk“foot print” of large data volumes of sequences. This supports the computational infrastructure for a more efficient archiving. The approach was shown to find utility in 21 Eukaryotic genomes using stratified sampling in this report. The method achieves an average of 6-fold disk space reduction with three times better compression time than COMRAD.

Availability

The source codes are written in C using message passing libraries and are available at https:// sourceforge.net/ projects/ comradmpi/files / COMRADMPI/  相似文献   

5.
6.
Pipelines for the analysis of Next-Generation Sequencing (NGS) data are generally composed of a set of different publicly available software, configured together in order to map short reads of a genome and call variants. The fidelity of pipelines is variable. We have developed ArtificialFastqGenerator, which takes a reference genome sequence as input and outputs artificial paired-end FASTQ files containing Phred quality scores. Since these artificial FASTQs are derived from the reference genome, it provides a gold-standard for read-alignment and variant-calling, thereby enabling the performance of any NGS pipeline to be evaluated. The user can customise DNA template/read length, the modelling of coverage based on GC content, whether to use real Phred base quality scores taken from existing FASTQ files, and whether to simulate sequencing errors. Detailed coverage and error summary statistics are outputted. Here we describe ArtificialFastqGenerator and illustrate its implementation in evaluating a typical bespoke NGS analysis pipeline under different experimental conditions. ArtificialFastqGenerator was released in January 2012. Source code, example files and binaries are freely available under the terms of the GNU General Public License v3.0. from https://sourceforge.net/projects/artfastqgen/.  相似文献   

7.
Genome data are becoming increasingly important for modern medicine. As the rate of increase in DNA sequencing outstrips the rate of increase in disk storage capacity, the storage and data transferring of large genome data are becoming important concerns for biomedical researchers. We propose a two-pass lossless genome compression algorithm, which highlights the synthesis of complementary contextual models, to improve the compression performance. The proposed framework could handle genome compression with and without reference sequences, and demonstrated performance advantages over best existing algorithms. The method for reference-free compression led to bit rates of 1.720 and 1.838 bits per base for bacteria and yeast, which were approximately 3.7% and 2.6% better than the state-of-the-art algorithms. Regarding performance with reference, we tested on the first Korean personal genome sequence data set, and our proposed method demonstrated a 189-fold compression rate, reducing the raw file size from 2986.8 MB to 15.8 MB at a comparable decompression cost with existing algorithms. DNAcompact is freely available at https://sourceforge.net/projects/dnacompact/for research purpose.  相似文献   

8.
Inverted repeats are present in abundance in both prokaryotic and eukaryotic genomes and can form DNA secondary structures – hairpins and cruciforms that are involved in many important biological processes. Bioinformatics tools for efficient and accurate detection of inverted repeats are desirable, because existing tools are often less accurate and time consuming, sometimes incapable of dealing with genome-scale input data. Here, we present a MATLAB-based program called detectIR for the perfect and imperfect inverted repeat detection that utilizes complex numbers and vector calculation and allows genome-scale data inputs. A novel algorithm is adopted in detectIR to convert the conventional sequence string comparison in inverted repeat detection into vector calculation of complex numbers, allowing non-complementary pairs (mismatches) in the pairing stem and a non-palindromic spacer (loop or gaps) in the middle of inverted repeats. Compared with existing popular tools, our program performs with significantly higher accuracy and efficiency. Using genome sequence data from HIV-1, Arabidopsis thaliana, Homo sapiens and Zea mays for comparison, detectIR can find lots of inverted repeats missed by existing tools whose outputs often contain many invalid cases. detectIR is open source and its source code is freely available at: https://sourceforge.net/projects/detectir.  相似文献   

9.
Detection of somatic variation using sequence from disease-control matched data sets is a critical first step. In many cases including cancer, however, it is hard to isolate pure disease tissue, and the impurity hinders accurate mutation analysis by disrupting overall allele frequencies. Here, we propose a new method, Virmid, that explicitly determines the level of impurity in the sample, and uses it for improved detection of somatic variation. Extensive tests on simulated and real sequencing data from breast cancer and hemimegalencephaly demonstrate the power of our model. A software implementation of our method is available at http://sourceforge.net/projects/virmid/.  相似文献   

10.
11.
The presence of duplicates introduced by PCR amplification is a major issue in paired short reads from next-generation sequencing platforms. These duplicates might have a serious impact on research applications, such as scaffolding in whole-genome sequencing and discovering large-scale genome variations, and are usually removed. We present FastUniq as a fast de novo tool for removal of duplicates in paired short reads. FastUniq identifies duplicates by comparing sequences between read pairs and does not require complete genome sequences as prerequisites. FastUniq is capable of simultaneously handling reads with different lengths and results in highly efficient running time, which increases linearly at an average speed of 87 million reads per 10 minutes. FastUniq is freely available at http://sourceforge.net/projects/fastuniq/.  相似文献   

12.
13.
Proteogenomic approaches have gained increasing popularity, however it is still difficult to integrate mass spectrometry identifications with genomic data due to differing data formats. To address this difficulty, we introduce iPiG as a tool for the integration of peptide identifications from mass spectrometry experiments into existing genome browser visualizations. Thereby, the concurrent analysis of proteomic and genomic data is simplified and proteomic results can directly be compared to genomic data. iPiG is freely available from https://sourceforge.net/projects/ipig/. It is implemented in Java and can be run as a stand-alone tool with a graphical user-interface or integrated into existing workflows. Supplementary data are available at PLOS ONE online.  相似文献   

14.
Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/.  相似文献   

15.
RNase H (RNH) is a pivotal domain in retrovirus to cleave the DNA-RNA hybrid for continuing retroviral replication. The crucial role indicates that RNH is a promising drug target for therapeutic intervention. However, annotated RNHs in UniProtKB database have still been insufficient for a good understanding of their statistical characteristics so far. In this work, a computational RNH model was proposed to annotate new putative RNHs (np-RNHs) in the retroviruses. It basically predicts RNH domains through recognizing their start and end sites separately with SVM method. The classification accuracy rates are 100%, 99.01% and 97.52% respectively corresponding to jack-knife, 10-fold cross-validation and 5-fold cross-validation test. Subsequently, this model discovered 14,033 np-RNHs after scanning sequences without RNH annotations. All these predicted np-RNHs and annotated RNHs were employed to analyze the length, hydrophobicity and evolutionary relationship of RNH domains. They are all related to retroviral genera, which validates the classification of retroviruses to a certain degree. In the end, a software tool was designed for the application of our prediction model. The software together with datasets involved in this paper can be available for free download at https://sourceforge.net/projects/rhtool/files/?source=navbar.  相似文献   

16.
The adaptive immune system includes populations of B and T cells capable of binding foreign epitopes via antigen specific receptors, called immunoglobulin (IG) for B cells and the T cell receptor (TCR) for T cells. In order to provide protection from a wide range of pathogens, these cells display highly diverse repertoires of IGs and TCRs. This is achieved through combinatorial rearrangement of multiple gene segments in addition, for B cells, to somatic hypermutation. Deep sequencing technologies have revolutionized analysis of the diversity of these repertoires; however, accurate TCR/IG diversity profiling requires specialist bioinformatics tools. Here we present LymAnalzyer, a software package that significantly improves the completeness and accuracy of TCR/IG profiling from deep sequence data and includes procedures to identify novel alleles of gene segments. On real and simulated data sets LymAnalyzer produces highly accurate and complete results. Although, to date we have applied it to TCR/IG data from human and mouse, it can be applied to data from any species for which an appropriate database of reference genes is available. Implemented in Java, it includes both a command line version and a graphical user interface and is freely available at https://sourceforge.net/projects/lymanalyzer/.  相似文献   

17.
Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates.

Availability

AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.  相似文献   

18.
19.
20.
Microbial community profiling identifies and quantifies organisms in metagenomic sequencing data using either reference based or unsupervised approaches. However, current reference based profiling methods only report the presence and abundance of single reference genomes that are available in databases. Since only a small fraction of environmental genomes is represented in genomic databases, these approaches entail the risk of false identifications and often suggest a higher precision than justified by the data. Therefore, we developed MicrobeGPS, a novel metagenomic profiling approach that overcomes these limitations. MicrobeGPS is the first method that identifies microbiota in the sample and estimates their genomic distances to known reference genomes. With this strategy, MicrobeGPS identifies organisms down to the strain level and highlights possibly inaccurate identifications when the correct reference genome is missing. We demonstrate on three metagenomic datasets with different origin that our approach successfully avoids misleading interpretation of results and additionally provides more accurate results than current profiling methods. Our results indicate that MicrobeGPS can enable reference based taxonomic profiling of complex and less characterized microbial communities. MicrobeGPS is open source and available from https://sourceforge.net/projects/microbegps/ as source code and binary distribution for Windows and Linux operating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号