首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.

Oxidative stress may cause extended tyrosine posttranslational modifications of peptides and proteins. The 3-nitro-L-tyrosine (Nit), which is typically formed, affects protein behavior during neurodegenerative processes, such as Alzheimer’s and Parkinson’s diseases. Such metabolic products may be conveniently detected at very low concentrations by surface enhanced Raman spectroscopy (SERS). Previously, we have explored the SERS detection of the Nit NO2 bending vibrational bands in a presence of hydrogen chloride (Niederhafner et al., Amino Acids 53:517–532, 2021, ibid). In this article, we describe performance of a new SERS substrate, “pink silver”, synthesized photochemically. It provides SERS even without the HCl induction, and the acid further decreases the detection limit about 9 times. Strong SERS bands were observed in the asymmetric (1550–1475 cm?1) and symmetric (1360–1290 cm?1) NO stretching in the NO2 group. The bending vibration was relatively weak, but appeared stronger when HCl was added. The band assignments were supported by density functional theory modeling.

  相似文献   

2.
Abstract

Heavy metals have been implicated as the causative agents for the pathogenesis of the most prevalent neurodegenerative disease. Various mechanisms have been proposed to explain the toxic effects of metals ranging from metal-induced oxidation of protein to metal-induced changes in the protein conformation. Aggregation of α-synuclein is implicated in Parkinson's disease (PD), and various metals, including copper, constitute a prominent group of α-synuclein aggregation enhancers. In this study, we have systematically characterized the α-synuclein-Cu2+ binding sites and analyzed the possible role of metal binding in α-synuclein fibrillation using a set of biophysical techniques, such as electron paramagnetic resonance (EPR), electron spin-echo envelope modulation (ESEEM), circular dichroism (CD), and size exclusion chromatography (SEC). Our analyses indicated that α-synuclein possesses at least two binding sites for Cu2+. We have been able to locate one of the binding sites in the N-terminal region. Furthermore, based on the EPR studies of model peptides and β-synuclein, we concluded that the suspected His residue did not appear to participate in strong Cu2+ binding.  相似文献   

3.
Recent reports suggest that intramolecular electron transfer reactions can profoundly affect the site and specificity of tyrosyl nitration and oxidation in peptides and proteins. Here we investigated the effects of methionine on tyrosyl nitration and oxidation induced by myeloperoxidase (MPO), H2O2 and NO2 and peroxynitrite (ONOO) or ONOO and bicarbonate (HCO3) in model peptides, tyrosylmethionine (YM), tyrosylphenylalanine (YF) and tyrosine. Nitration and oxidation products of these peptides were analyzed by HPLC with UV/Vis and fluorescence detection, and mass spectrometry; radical intermediates were identified by electron paramagnetic resonance (EPR)-spin-trapping. We have previously shown (Zhang et al., J. Biol. Chem. 280 (2005) 40684-40698) that oxidation and nitration of tyrosyl residue was inhibited in tyrosylcysteine(YC)-type peptides as compared to free tyrosine. Here we show that methionine, another sulfur-containing amino acid, does not inhibit nitration and oxidation of a neighboring tyrosine residue in the presence of ONOO (or ONOOCO2) or MPO/H2O2/NO2 system. Nitration of tyrosyl residue in YM was actually stimulated under the conditions of in situ generation of ONOO (formed by reaction of superoxide with nitric oxide during SIN-1 decomposition), as compared to YF, YC and tyrosine. The dramatic variations in tyrosyl nitration profiles caused by methionine and cysteine residues have been attributed to differences in the direction of intramolecular electron transfer in these peptides. Further support for the interpretation was obtained by steady-state radiolysis and photolysis experiments. Potential implications of the intramolecular electron transfer mechanism in mediating selective nitration of protein tyrosyl groups are discussed.  相似文献   

4.
α-Synuclein is involved in Parkinson's disease, and its interaction with cell membrane is vital to its pathological and physiological functions. We have shown that Ca2+ can regulate α-synuclein membrane interaction, but the physiological role of Ca2+ in modulating α-synuclein membrane interaction is still unexplored. Based on the previous findings that α-synuclein inhibits membrane fusion and its inhibitory effect is highly related to its membrane binding, here we employed solution state Nuclear Magnetic Resonance (NMR) spectroscopy and the ensemble fluorescence fusion assay to show that Ca2+ can modulate the inhibitory effect of α-synuclein on SNARE-mediated membrane fusion through disrupting α-synuclein membrane interaction, resulting in acceleration of SNARE-mediated membrane fusion. These results suggest a modulatory effect of Ca2+ on membrane mediated normal function of α-synuclein, which of importance for the study of the Parkinson's disease.  相似文献   

5.
Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models.Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation.These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.  相似文献   

6.
Independent force field validation is an essential practice to keep track of developments and for performing meaningful Molecular Dynamics simulations. In this work, atomistic force fields for intrinsically disordered proteins (IDP) are tested by simulating the archetypical IDP α-synuclein in solution for 2.5 μs. Four combinations of protein and water force fields were tested: ff19SB/OPC , ff19SB/TIP4P-D , ff03CMAP/TIP4P-D , and a99SB-disp/TIP4P-disp , with four independent repeat simulations for each combination. We compare our simulations to the results of a 73 μs simulation using the a99SB-disp/TIP4P-disp combination, provided by D. E. Shaw Research. From the trajectories, we predict a range of experimental observations of α-synuclein and compare them to literature data. This includes protein radius of gyration and hydration, intramolecular distances, NMR chemical shifts, and 3J-couplings. Both ff19SB/TIP4P-D and a99SB-disp/TIP4P-disp produce extended conformational ensembles of α-synuclein that agree well with experimental radius of gyration and intramolecular distances while a99SB-disp/TIP4P-disp reproduces a balanced α-synuclein secondary structure content. It was found that ff19SB/OPC and ff03CMAP/TIP4P-D produce overly compact conformational ensembles and show discrepancies in the secondary structure content compared to the experimental data.  相似文献   

7.
This study investigated the involvement of advanced glycation end products (AGEs) that may be nonenzymatically linked to α-synuclein accumulation in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced C57BL/6 mouse model of parkinsonism. MPTP (20 mg/kg) was intraperitoneally administrated once daily for 30 days to the MPTP group while a saline only solution was administered to the control group. Results show that the immunoreactivities of the tyrosine hydroxylase and dopamine transporter significantly decreased in the striatum and the substantia nigra (SN) in the MPTP model compared to the subjects in the control group. α-synuclein was co-localized with N?-(carboxymethyl)lysine (CML) and N?-(carboxyethyl)lysine (CEL), which are well-known AGEs, in tyrosine hydroxylase-positive dopaminergic neurons in the MPTP brains. α-synuclein was also shown to be deposited in the CD11b-positive activated microglia. Some AGEs-modified proteins (CML-, CEL-, pentosidine-, or pyrraline-modified proteins) and an oligomeric form of α-synuclein appear to have almost the same molecular weight, specifically between 50 and 75 kDa; in addition, these formations were more strongly deposited in the SN region of the MPTP brains than in the control brains. Moreover, the oligomeric form of α-synuclein was modified with CML in the SNs of both the control and MPTP brains. This study, for the first time, shows that chronic dopaminergic neurodegeneration by MPTP can lead to the depositing of an oligomeric form of α-synuclein, CML-linked α-synuclein, and CEL-, pentosidine-, or pyrraline-linked proteins between 50 and 75 kDa. It is thus suggested that CML, especially a CML-linked α-synuclein oligomer between 50 and 75 kDa, may be, at least in part, involved in the aggregation of the α-synuclein induced by MPTP intoxication.  相似文献   

8.
Alpha(α)-synuclein is closely related to the pathogenesis of Parkinson's disease (PD). The NACore, a fragment of α-synuclein, is considered to be the key region of α-synuclein that causes PD. The aggregation dynamics of NACores are studied via coarse-grained molecular dynamics simulations. We find that NACores can self-assemble into a large cluster at high concentrations. The aggregation dynamics can be divided into three stages. The growth kinetics for the first and second stages follows the power law, Smax ~ tγ, with the second stage faster than the first one. The characteristic lifetime for the high concentration is 40 times larger than that for the low concentration, implying the low fluidity. Understanding the aggregation dynamics of NACores is helpful to develop drugs for therapeutic prevention and intervention.  相似文献   

9.
α-Synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature and lipid composition, have been shown to affect the interactions by various techniques, but ion effects on α-synuclein membrane interactions remain elusive. Ca2 + dynamic fluctuation in neurons plays important roles in the onset of Parkinson's disease and its influx is considered as one of the reasons to cause cell death. Using solution Nuclear Magnetic Resonance (NMR) spectroscopy, here we show that Ca2 + can modulate α-synuclein membrane interactions through competitive binding to anionic lipids, resulting in dissociation of α-synuclein from membranes. These results suggest a negative modulatory effect of Ca2 + on membrane mediated normal function of α-synuclein, which may provide a clue, to their dysfunction in neurodegenerative disease.  相似文献   

10.
Abstract

The c-erbB2 proto-oncogene encodes for a protein of 185kDa (p 185) which becomes transforming upon the Val→-Glu transmembrane amino acid substitution. The transforming ability seems to be due to a substitution-resulting constitutive activation of the tyrosine kinase cytosolic domain of the protein. These observations prompted us to evaluate the structural and dynamical behavior of the transmembrane region of the wild and transforming p 185 protein in order to understand the role of this region in the transduction mechanism. 160 ps molecular dynamics simulations in vacuo have been performed on two peptides corresponding to the sequence [651-679] of p 185c-erbB2 protein and its transforming mutant Val659→Glu659. These two sequences include the transmembrane domain and are initially postulated to be in an α- helix conformation. Noticeable differences in the flexibility of the two peptides are shown. The nontransforming sequence seems rather flexible and several conformational changes are detected at the junction of the mutation point [658-659] and at position Val665-Val666 during the 160 ps simulations. On the contrary, no transitions were observed for the mutated sequence which adopts a stable α-helix conformation. This difference in flexibility could be hypothesized as a factor involved in the regulation of the tyrosine kinase activity of 185c-erbB2  相似文献   

11.
α-Synuclein is the major component of the intracellular Lewy body inclusions present in Parkinson disease (PD) neurons. PD involves the loss of dopaminergic neurons in the substantia nigra and the subsequent depletion of dopamine (DA) in the striatum. DA can inhibit α-synuclein fibrillization in vitro and promote α-synuclein aggregation into soluble oligomers. We have studied the mechanism by which DA mediates α-synuclein aggregation into soluble oligomers. Reacting α-synuclein with DA increased the mass of α-synuclein by 64 Da. NMR showed that all four methionine residues were oxidized by DA, consistent with the addition of 64 Da. Substituting all four methionines to alanine significantly reduced the formation of DA-mediated soluble oligomers. The 125YEMPS129 motif in α-synuclein can modulate DA inhibition of α-synuclein fibrillization. However, α-synuclein ending before the 125YEMPS129 motif (residues 1–124) could still form soluble oligomers. The addition of exogenous synthetic YEMPS peptide inhibited the formation of soluble oligomers and resulted in the YEMPS peptide being oxidized. Therefore, the 125YEMPS129 acts as an antioxidant rather than interacting directly with DA. Our study defines methionine oxidation as the dominant mechanism by which DA generates soluble α-synuclein oligomers and highlights the potential role for oxidative stress in modulating α-synuclein aggregation.  相似文献   

12.
Previous studies have shown that yeast 3-phosphoglycerate kinase is inhibited by nitration of a single tyrosine residue. Chymotryptic fragmentation of the nitrated protein followed by peptide mapping revealed approximately fifty peptides, one of which was shown to contain a nitrotyrosine residue. Isolation of this unique peptide was accomplished by gel filtration and high voltage paper electrophoresis. The sequence as established by Edman degradation and carboxypeptidase hydrolysis is: Lys-NO2Tyr-Phe-Phe-Lys. Independent observations on the X-ray crystallographic model of yeast phosphoglycerate kinase provides supportive evindence of this sequence. Additionally, a peptide has been isolated containing an active-site carboxyl residue following modification of the enzyme with [14C]methoxyamine.  相似文献   

13.
Reaction of Cerebratulus lacteus toxin B-IV with tetranitromethane in the presence of low concentrations of urea results in essentially complete loss of toxicity as measured by a sensitive quantal bioassay. Amino acid analysis and speetrophotometric studies both indicate the primary effect of reaction to be nitration of a single tyrosine residue per molecule of toxin. The nitrated residue has been identified as tyrosine-9 by automated Edman degradation of the modified protein. Since the secondary structure of toxin B-IV is not detectably altered by nitration, it is concluded that tyrosine-9 is directly involved in the interaction of this polypeptide with its axonal receptor, proposed to be involved in the inactivation of voltage-sensitive Na+ channels in crustacean nerves.  相似文献   

14.
Abstract

Protein tyrosine nitration is an oxidative postranslational modification that can affect protein structure and function. It is mediated in vivo by the production of nitric oxide-derived reactive nitrogen species (RNS), including peroxynitrite (ONOO?) and nitrogen dioxide (?NO2). Redox-active transition metals such as iron (Fe), copper (Cu), and manganese (Mn) can actively participate in the processes of tyrosine nitration in biological systems, as they catalyze the production of both reactive oxygen species and RNS, enhance nitration yields and provide site-specificity to this process. Early after the discovery that protein tyrosine nitration can occur under biologically relevant conditions, it was shown that some low molecular weight transition-metal centers and metalloproteins could promote peroxynitrite-dependent nitration. Later studies showed that nitration could be achieved by peroxynitrite-independent routes as well, depending on the transition metal-catalyzed oxidation of nitrite (NO2?) to ?NO2 in the presence of hydrogen peroxide. Processes like these can be achieved either by hemeperoxidase-dependent reactions or by ferrous and cuprous ions through Fenton-type chemistry. Besides the in vitro evidence, there are now several in vivo studies that support the close relationship between transition metal levels and protein tyrosine nitration. So, the contribution of transition metals to the levels of tyrosine nitrated proteins observed under basal conditions and, specially, in disease states related with high levels of these metal ions, seems to be quite clear. Altogether, current evidence unambiguously supports a central role of transition metals in determining the extent and selectivity of protein tyrosine nitration mediated both by peroxynitrite-dependent and independent mechanisms.  相似文献   

15.
The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO? ) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to NO, MnSOD-derived NO? species initiate the formation of peroxynitrite (ONOO? ) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO? decomposition and ONOO? -dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO? is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of NO.  相似文献   

16.
Abstract

The central domain of smooth muscle caldesmon contains a highly charged region consisting of ten 13-residue repeats. Experimental evidence obtained from the intact protein and fragments thereof suggests that this entire region forms a single stretch of stable α-helix. We have carried out molecular dynamics simulations on peptides consisting of one, two and three repeats to examine the mechanism of α-helical stability of the central domain at the atomic level. All three peptides show high helical stability on the timescale of the MD simulations. Deviations from α-helical structure in all the simulations arise mainly from the formation of long stretches of π-helix. Interconversion between α-helical and π-helical conformations occurs through insertion of water molecules into α-helical hydrogen bonds and subsequent formation of reverse turns. The α-helical structure is stabilized by electrostatic interactions (salt bridges) between oppositely charged sidechains with i,i+4 spacings, while the π-helix is stabilized by i,i+5 salt bridge interactions. Possible i,i+3 salt bridges are of minor importance. There is a strong preference for salt bridges with a Glu residue N-terminal to a basic sidechain as compared to the opposite orientation. In the double and triple repeat peptides, strong i,i+4 salt bridges exist between the last Glu residue of one repeat and the first Lys residue of the next. This demonstrates a relationship between the repetitive nature of the central domain sequence and its ability to form very long stretches of α-helical structure.  相似文献   

17.
Wang  Liuzhu  Jiang  Shuiqin  Sun  Yangyang  Yang  Zeyu  Chen  Zhi  Wang  Hualei  Wei  Dongzhi 《Biotechnology letters》2021,43(8):1617-1624
Objectives

Catalytic promiscuity, or the ability to catalyze a secondary reaction, provides new opportunities for industrial biocatalysis by expanding the range of biocatalytic reactions. Some nitrilases converting nitriles to amides, referred to as the secondary activity, show great potential for amides production. And our goal was exploiting the amide-forming potential of nitrilases.

Results

In this study, we characterized and altered the secondary activity of nitrilase from Acidovorax facilis 72 W (Nit72W) towards different substrates. We increased the secondary activity of Nit72W towards 2-cyanopyridine by 196-fold and created activity toward benzonitrile and p-nitrophenylacetonitrile by modifying the active pocket. Surprisingly, the best mutant, W188M, completely converted 250 mM 2-cyanopyridine to more than 98% 2-picolinamide in 12 h with a specific activity of 90 U/mg and showed potential for industrial applications.

Conclusions

Nit72W was modified to increase its secondary activity for the amides production, especially 2-picolinamide.

  相似文献   

18.
Protein folding remains an unsolved problem as main-chain, side-chain, and solvent interactions remain entangled and have been hard to resolve. Polyalanines are promising models to analyze protein folding initiation and propagation structurally as well as energetically. In the present work, the effect of chain-length and N-terminal residue stereochemistry in polyalanine peptides are investigated for their role in the nucleation of α-helical conformation. The end-protected polyalanine peptides, tetra-alanine, Ac-LAla4-NHMe (Ia) and Ac-DAla-LAla3-NHMe (Ib), hexa-alanine, Ac-LAla6-NHMe (IIa) and Ac-DAla-LAla5-NHMe (IIb), and octa-alanine, Ac-LAla8-NHMe (IIIa) and Ac-DAla-LAla7-NHMe (IIIb), are assessed as chain-length and stereochemical-structure perturbed models. The appreciable variations in the sampling of α-helical conformation, including a sampling of α-helix folds, due to the cooperative effect of chain-length and N-terminal residue stereochemistry have been noted. The electrostatics of α-helical conformation rather than the conformational entropy of the main-chain appear to be decisive in the initiation of α-helix folding. The results of the present work will enhance our understanding on the nucleation of α-helical conformation in short peptides and aid in the design of novel peptides with α-helical structure that can modulate disease-related protein–protein interactions.  相似文献   

19.
Minocycline prevents oxidative protein modifications and damage in disease models associated with inflammatory glial activation and oxidative stress. Although the drug has been assumed to act by preventing the up-regulation of proinflammatory enzymes, we probed here its direct chemical interaction with reactive oxygen species. The antibiotic did not react with superoxide or NO radicals, but peroxynitrite (PON) was scavenged in the range of ∼1 μm minocycline and below. The interaction of pharmacologically relevant minocycline concentrations with PON was corroborated in several assay systems and significantly exceeded the efficacy of other antibiotics. Minocycline was degraded during the reaction with PON, and the resultant products lacked antioxidant properties. The antioxidant activity of minocycline extended to cellular systems, because it prevented neuronal mitochondrial DNA damage and glutathione depletion. Maintenance of neuronal viability under PON stress was shown to be solely dependent on direct chemical scavenging by minocycline. We chose α-synuclein (ASYN), known from Parkinsonian pathology as a biologically relevant target in chemical and cellular nitration reactions. Submicromolar concentrations of minocycline prevented tyrosine nitration of ASYN by PON. Mass spectrometric analysis revealed that minocycline impeded nitrations more effectively than methionine oxidations and dimerizations of ASYN, which are secondary reactions under PON stress. Thus, PON scavenging at low concentrations is a novel feature of minocycline and may help to explain its pharmacological activity.  相似文献   

20.
Cell surface glycosphingolipids (GSLs) including gangliosides play a key role in the regulation of the conformation, oligomerization, and fibrillation of amyloidogenic proteins. Correspondingly, most amyloidogenic proteins possess a functional GSL-binding motif (GBM). Sequence alignments of GSL-binding proteins against the GBM of α-synuclein allowed the establishment of a consensus GBM sequence defined as K/H/R/-X(1-4)-Y/F-X(4-5)-K/H/R, where at least one of the X(1-4) residues is glycine. The GBMs of α-synuclein (34-KEGVLYVGSKTK-45) and Alzheimer's disease β-amyloid peptide (Aβ) (5-RHDSGYEVHHQK-16) consist of a structurally related loop centered on tyrosine (Y39 for α-synuclein, Y10 for Aβ). Surface pressure measurements of GSL monolayers at the air-water interface allowed us to determine the following order for α-synuclein-GSL interactions: GM3 > Gb3 > GalCer-NFA > GM1 > sulfatide > GalCer-HFA > LacCer > GM4 > GM2 > asialo-GM1 > GD3, indicating a marked preference for GSLs with one, three, or five sugar units. The insertion of α-synuclein into sphingomyelin-containing monolayers was strongly stimulated by the presence of GM3. This effect was not observed with phosphatidylcholine monolayers, suggesting that the ganglioside facilitated the insertion of α-synuclein into raft-like membrane domains. Molecular dynamics simulations suggested that the side chain of Y39 was deeply inserted between GM3 head groups. Monolayer experiments with mutant GBM peptides showed that Y39, K34, and K45 were important for GM3 binding, whereas only Y39 appeared critical for GM1 recognition. The interaction of Aβ 5-16 with GM1 involved R5, H13, H14, and K16, but not Y10. These data indicate that subtle amino acid variations in the consensus GBM of α-synuclein and Aβ conferred distinct GSL-binding properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号