首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Li ZL  Liu JC  Liu SB  Li XQ  Yi DH  Zhao MG 《PloS one》2012,7(6):e38787
The G-protein coupled estrogen receptor 30 (GPR30) is a seven-transmembrane domain receptor that mediates rapid estrogen responses in a wide variety of cell types. This receptor is highly expressed in the cardiovascular system, and exerts vasodilatory effects. The objective of the present study was to investigate the effects of GPR30 on vascular responsiveness in diabetic ovariectomized (OVX) rats and elucidate the possible mechanism involved. The roles of GPR30 were evaluated in the thoracic aorta and cultured endothelial cells. The GPR30 agonist G1 induced a dose-dependent vasodilation in the thoracic aorta of the diabetic OVX rats, which was partially attenuated by the nitric oxide synthase (NOS) inhibitor, nitro-L-arginine methylester (L-NAME) and the GPR30-selective antagonist G15. Dose-dependent vasoconstrictive responses to phenylephrine were attenuated significantly in the rings of the thoracic aorta following the acute G1 administration in the diabetic OVX rats. This effect of G1 was abolished partially by L-NAME and G15. The acute administration of G1 increased significantly the eNOS activity and the concentration of NO in the endothelial cells exposed to high glucose. G1 treatment induced an enhanced endothelium-dependent relaxation to acetylcholine (Ach) in the diabetic OVX rats. Further examination revealed that G1 induced vasodilation in the diabetic OVX rats by increasing the phosphorylation of eNOS. These findings provide preliminary evidence that GPR30 activation leads to eNOS activation, as well as vasodilation, to a certain degree and has beneficial effects on vascular function in diabetic OVX rats.  相似文献   

2.
Chaihu-Shugan-San (CSS) is a traditional Chinese herbal formula that is widely used for treating perimenopausal symptoms in China; however, its mechanisms remain unknown. The present study was designed to investigate potential CSS mechanisms in rats with unpredicted chronic mild stress (UCMS) and normally aging rats (52 weeks of age). We performed the sucrose consumption test along with the forced swimming test to confirm depression-like behavior and the open field test (OFT) to confirm anxiety-like behavior in the animals. In addition, we used an enzyme-linked immunosorbent assay to measure serum and hippocampal estradiol (E2) levels and a quantitative real-time polymerase chain reaction to assess hippocampal mRNA levels of estrogen receptors (ERs) α and β as well as G protein-coupled receptor 30 (GPR30). We found that CSS administration resulted in a significant increase in the ratio of hippocampal ERα and ERβ mRNA (ERα/ERβ ratio) in UCMS rats (p<0.001). However, no significant changes were observed in E2 levels, ERα mRNA expression, and GPR30 mRNA expression. In contrast, changes in ERα/ERβ mRNA ratio were sensitively associated with changes in mood states in the animal models. These findings suggest that enhancement of ERα/ERβ ratio may play a role in the pharmacological mechanisms of CSS. Furthermore, this ratio can be employed as a potential index for evaluating mood states in animal models and can be considered as a therapeutic target for perimenopausal anxiety and depression in the future.  相似文献   

3.

Background

A greater reduction in cardiovascular risk and vascular protection associated with diet rich in polyphenols are generally accepted; however, the molecular targets for polyphenols effects remain unknown. Meanwhile evidences in the literature have enlightened, not only structural similarities between estrogens and polyphenols known as phytoestrogens, but also in their vascular effects. We hypothesized that alpha isoform of estrogen receptor (ERα) could be involved in the transduction of the vascular benefits of polyphenols.

Methodology/Principal Findings

Here, we used ERα deficient mice to show that endothelium-dependent vasorelaxation induced either by red wine polyphenol extract, Provinols™, or delphinidin, an anthocyanin that possesses similar pharmacological profile, is mediated by ERα. Indeed, Provinols™, delphinidin and ERα agonists, 17-beta-estradiol and PPT, are able to induce endothelial vasodilatation in aorta from ERα Wild-Type but not from Knock-Out mice, by activation of nitric oxide (NO) pathway in endothelial cells. Besides, silencing the effects of ERα completely prevented the effects of Provinols™ and delphinidin to activate NO pathway (Src, ERK 1/2, eNOS, caveolin-1) leading to NO production. Furthermore, direct interaction between delphinidin and ERα activator site is demonstrated using both binding assay and docking. Most interestingly, the ability of short term oral administration of Provinols™ to decrease response to serotonin and to enhance sensitivity of the endothelium-dependent relaxation to acetylcholine, associated with concomitant increased NO production and decreased superoxide anions, was completely blunted in ERα deficient mice.

Conclusions/Significance

This study provides evidence that red wine polyphenols, especially delphinidin, exert their endothelial benefits via ERα activation. It is a major breakthrough bringing new insights of the potential therapeutic of polyphenols against cardiovascular pathologies.  相似文献   

4.
Recent evidence suggests that estrogen is synthesized in the spinal dorsal horn and plays a role in nociceptive processes. However, the cellular and molecular mechanisms underlying these effects remain unclear. Using electrophysiological, biochemical, and morphological techniques, we here demonstrate that 17β-estradiol (E2), a major form of estrogen, can directly modulate spinal cord synaptic transmission by 1) enhancing NMDA receptor-mediated synaptic transmission in dorsal horn neurons, 2) increasing glutamate release from primary afferent terminals, 3) increasing dendritic spine density in cultured spinal cord dorsal horn neurons, and 4) potentiating spinal cord long term potentiation (LTP) evoked by high frequency stimulation (HFS) of Lissauer''s tract. Notably, E2-BSA, a ligand that acts only on membrane estrogen receptors, can mimic E2-induced facilitation of HFS-LTP, suggesting a nongenomic action of this neurosteroid. Consistently, cell surface biotinylation demonstrated that three types of ERs (ERα, ERβ, and GPER1) are localized on the plasma membrane of dorsal horn neurons. Furthermore, the ERα and ERβ antagonist ICI 182,780 completely abrogates the E2-induced facilitation of LTP. ERβ (but not ERα) activation can recapitulate E2-induced persistent increases in synaptic transmission (NMDA-dependent) and dendritic spine density, indicating a critical role of ERβ in spinal synaptic plasticity. E2 also increases the phosphorylation of ERK, PKA, and NR2B, and spinal HFS-LTP is prevented by blockade of PKA, ERK, or NR2B activation. Finally, HFS increases E2 release in spinal cord slices, which can be prevented by aromatase inhibitor androstatrienedione, suggesting activity-dependent local synthesis and release of endogenous E2.  相似文献   

5.
Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER) in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERα and ERβ on calcium oscillations in neurons derived from human (hES) and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERβ, but not ERα. The non-selective ER agonist 17β-estradiol (E2) rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERα agonist 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT). In contrast, the selective ERβ agonists, 2,3-bis(4-Hydroxyphenyl)-propionitrile (DPN), MF101, and 2-(3-fluoro-4-hydroxyphenyl)-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041) stimulated calcium oscillations similar to E2. The ERβ agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERβ activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERβ signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.  相似文献   

6.
7.
The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

8.
We previously demonstrated that aged ovariectomized rats that had received prior estradiol treatment in middle-age exhibited increased levels of estrogen receptor alpha (ERα) in the hippocampus as well as enhanced hippocampal dependent memory as compared to aged rats that had not received mid-life estradiol treatment. These effects persisted long after the estradiol treatment had been terminated. The goal of the current experiment was to determine if increased expression of ERα in the hippocampus, in the absence of exogenously administered estrogens, can impact the hippocampus and cognitive function in aging ovariectomized rats. Middle-aged rats were trained for 24 days on an eight-arm radial maze spatial memory task. All rats were then ovariectomized. Forty days later, rats received either lentiviral delivery to the hippocampus of the gene encoding ERα (lenti-ERα) or a control virus. Rats were tested on delay trials in the radial-maze in which delays of varying lengths were imposed between the fourth and fifth arm choices. Following behavior testing, hippocampi were immunostained using western blotting for ERα, the ERα-regulated protein choline acetyltransferase, and phosphorylation of the ERα-regulated kinases, ERK/MAPK and Akt. Results revealed that aging ovariectomized rats that received delivery of lenti-ERα to the hippocampus exhibited enhanced spatial memory as indicated by increased arm-choice accuracy across delays as compared to ovariectomized rats that received control virus. Western blot data revealed that lenti-ERα delivery significantly increased levels of ERα and phosphorylated ERK/MAPK and had no impact on levels of ChAT or phosphorylation of Akt. Results indicate that increasing hippocampal levels of ERα in aging females in the absence of ovarian or exogenously administered estrogens leads to increases in phosphorylation of ERK/MAPK as well as in enhanced memory.  相似文献   

9.
10.
Previous work has shown that continuous estradiol replacement in young ovariectomized rats enhances acquisition of a delayed matching-to-position (DMP) T-maze task over that of ovariectomized controls. The mechanism by which estradiol confers this benefit has not been fully elucidated. This study examined the role of selective estrogen receptor agonists of ERα, ERβ, and GPR30 in the enhancement of spatial learning on a DMP task by comparing continuous estradiol replacement with continuous administration of PPT (an agonist of ERα), DPN (an agonist of ERβ), or G-1 (an agonist of GPR30) relative to gonadally intact and ovariectomized vehicle-treated controls. It was found that ovariectomy impaired acquisition on this task, whereas all ER selective agonists restored the rate of acquisition to that of gonadally intact controls. These data suggest that estradiol can work through any of several estrogen receptors to enhance the rate of acquisition on this task.  相似文献   

11.
12.
There is an urgent clinical need for safe and effective treatment agents and therapy targets for estrogen receptor negative (ER−) breast cancer. G protein-coupled receptor 30 (GPR30), which mediates non-genomic signaling of estrogen to regulate cell growth, is highly expressed in ER− breast cancer cells. We here showed that activation of GPR30 by the receptor-specific agonist G-1 inhibited the growth of ER− breast cancer cells in vitro. Treatment of ER− breast cancer cells with G-1 resulted in G2/M-phase arrest, downregulation of G2-checkpoint regulator cyclin B, and induction of mitochondrial-related apoptosis. The G-1 treatment increased expression of p53 and its phosphorylation levels at Serine 15, promoted its nuclear translocation, and inhibited its ubiquitylation, which mediated the growth arrest effects on cell proliferation. Further, the G-1 induced sustained activation and nuclear translocation of ERK1/2, which was mediated by GPR30/epidermal growth factor receptor (EGFR) signals, also mediated its inhibition effects of G-1. With extensive use of siRNA-knockdown experiments and inhibitors, we found that upregulation of p21 by the cross-talk of GPR30/EGFR and p53 was also involved in G-1-induced cell growth arrest. In vivo experiments showed that G-1 treatment significantly suppressed the growth of SkBr3 xenograft tumors and increased the survival rate, associated with proliferation suppression and upregulation of p53, p21 while downregulation of cyclin B. The discovery of multiple signal pathways mediated the suppression effects of G-1 makes it a promising candidate drug and lays the foundation for future development of GPR30-based therapies for ER− breast cancer treatment.Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide.1 Clinically, breast cancer is generally classified into estrogen receptor α positive (ER+) or ER-negative (ER−) subtypes.2 ER− tumors are often intrinsically more aggressive and of higher grade than ER+ tumors.3 Since lack of the effectiveness of ER-targeted endocrine treatments (tamoxifen and aromatase inhibitors), patients with ER− breast cancer have significantly worse prognosis and greater 5-year recurrence rate than that of ER+ breast cancer.4 Considering that ER− breast cancer constitutes around 30% of all breast cancers,5 there is an urgent need to explore new targeted approaches for its treatment.A seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), which is structurally unrelated to nuclear ER, has been recently shown to mediate rapid non-genomic signals of estrogens. The activation of GPR30 can stimulate adenylyl cyclase, transactivate epidermal growth factor receptors (EGFRs), induce mobilization of intracellular calcium (Ca2+) stores, and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathways.6,7 Previous studies revealed that GPR30 can modulate growth of hormonally responsive cancers such as endometrial,8 ovarian,9 and breast cancer.10 Therefore, GPR30 likely has an important role in modulating estrogen responsiveness and development and/or progression of ER− breast cancer. Studies revealed that activation of GPR30 can induce the expression of genes and activate pathways that facilitate cell proliferation of endometrial,11,12 breast,13 and ovarian cancer.14 On the contrary, numerous studies demonstrated that activation of GPR30 by its specific agonist G-1 results in cell-cycle arrest and proliferation inhibition of ERα-positive breast cancer,10 endothelial cells,15 prostate,16 and ovarian9 cancer cells. So it requires further investigation on the function of activating GPR30 and the effect of G-1 on the cancer cells.GPR30 has been reported to be expressed in ER− breast cancer cells and suggested to be an excellent new therapeutic target for the treatment of ER− breast cancer.17 Confusedly, the only two published papers reported contradictory results: Girgert et al.18 stated that activation of GPR30 promotes growth of ER− breast cancer cells, while Weissenborn et al.19 revealed that GPR30 functions as a tumor suppressor of ER− breast cancer cells. Therefore, there is an urgent need to illustrate the effects of GPR30 on the proliferation of ER− breast cancer and its downstream signal mechanisms. In the present study, we demonstrated that activation of GPR30 by G-1 inhibits the proliferation of ER− breast cancer cells both in vitro and in vivo.  相似文献   

13.
Hemorrhagic stroke caused leakage of red blood cells which converts to hemoglobin, heme, and iron accumulated at the lesions. High concentration of ferrous iron from subarachnoid hemorrhage (SAH) induced cerebral vasospasm. Using the two-hemorrhage SAH model in rats, we previously demonstrated that estradiol (E2) significantly attenuated the SAH-induced vasospasm by inhibiting the NOS2 expression. Adding ferrous citrate (FC) complexes to the primary cultured mouse cerebral endothelial cells (CEC) to mimic the SAH conditions, we also showed that FC up-regulates NOS2 through nuclear translocation of NFκB induced by free radicals generation. Here, we further studied the molecular mechanism underlying E2-mediated reduction of the FC-induced up-regulation of NOS2. Treatment with E2 (100 nM) reduced the FC (100 µM)-induced increases of free radical generation and the levels of NOS2 mRNA and protein in the CEC. Moreover, E2 also prevented the FC-induced increases of IκBα phosphorylation, NFκB nuclear translocation, NFκB binding onto the NOS2 promoter, and the NOS2 promoter luciferase activity. However, knock-down the estrogen receptor β (ERβ), but not ERα, abolished the E2-mediated prevention on the FC-induced increases of NOS2 mRNA and protein. The data from the present study suggest that E2 inhibited NOS2 gene expression by interfering with NFκB nuclear translocation and NFκB binding onto the NOS2 through an ERβ-mediated pathway. Our results provide the molecular basis for designing the applicable therapeutic or preventive strategies in the treatment SAH patients.  相似文献   

14.
Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.  相似文献   

15.
The sex steroids, estrogens, progesterone, and androgens, all play a role in mammary development and function. To precisely identify the sites of action of these steroids, we studied the localization of the estrogen receptor α (ERα) and ERβ, the progesterone receptor A (PRA) and PRB, and androgen receptors (AR) in the normal human mammary gland. Immunocytochemical localization of ERα, ERβ, PRA, PRB, and AR was performed with reduction mammoplasty specimens from premenopausal women. ERα, PRA, PRB, and AR were localized mostly to the inner layer of epithelial cells lining acini and intralobular ducts, as well as to myoepithelial cells scattered in the external layer of interlobular ducts. AR was also found in some stromal cells. ERβ staining was more widespread, resulting in epithelial and myoepithelial cells being labeled in acini and ducts as well as stromal cells. These results suggest that all sex steroids can directly act on epithelial cells to modulate development and function of the human mammary gland. Estrogens and androgens can also indirectly influence epithelial cell activity by an action on stromal cells. (J Histochem Cytochem 58:509–515, 2010)  相似文献   

16.
17.
Renal cell carcinoma (RCC) originates in the lining of the proximal convoluted tubule and accounts for approximately 3% of adult malignancies. The RCC incidence rate increases annually and is twofold higher in males than in females. Female hormones such as estrogen may play important roles during RCC carcinogenesis and result in significantly different incidence rates between males and females. In this study, we found that estrogen receptor β (ERβ) was more highly expressed in RCC cell lines (A498, RCC-1, 786-O, ACHN, and Caki-1) than in breast cancer cell lines (MCF-7 and HBL-100); however, no androgen receptor (AR) or estrogen receptor α (ERα) could be detected by western blot. In addition, proliferation of RCC cell lines was significantly decreased after estrogen (17-β-estradiol, E2) treatment. Since ERβ had been documented to be a potential tumor suppressor gene, we hypothesized that estrogen activates ERβ tumor suppressive function, which leads to different RCC incidence rates between males and females. We found that estrogen treatment inhibited cell proliferation, migration, invasion, and increased apoptosis of 786-O (high endogenous ERβ), and ERβ siRNA-induced silencing attenuated the estrogen-induced effects. Otherwise, ectopic ERβ expression in A498 (low endogenous ERβ) increased estrogen sensitivity and thus inhibited cell proliferation, migration, invasion, and increased apoptosis. Analysis of the molecular mechanisms revealed that estrogen-activated ERβ not only remarkably reduced growth hormone downstream signaling activation of the AKT, ERK, and JAK signaling pathways but also increased apoptotic cascade activation. In conclusion, this study found that estrogen-activated ERβ acts as a tumor suppressor. It may explain the different RCC incidence rates between males and females. Furthermore, it implies that ERβ may be a useful prognostic marker for RCC progression and a novel developmental direction for RCC treatment improvement.  相似文献   

18.
19.
There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention.  相似文献   

20.
Previous studies indicated that estrogen could improve endothelial function. However, whether estrogen protects vascular complications of diabetes has yet to be clarified. The study was designed to investigate the action of 17ß-estradiol on vascular endothelium in streptozotocin (STZ)-induced diabetic rats. Ovariectomized female Sprague-Dawley rats were administered with streptozotocin to produce an ovariectomized-diabetic (OVS) model which manifested as dysfunction of aortic dilation and contraction ability. Meanwhile, OVS animals with 17ß-estradiol supplementation significantly improved aortic function. Accordingly, nitric oxide synthase-3 (NOS-3), Akt, PI3K and estrogen receptor α (ERα) protein expression in aorta declined in the OVS group. Such effects were partially restored by estrogen replacement. The presence of 17ß-estradiol similarly counteracted the reduction of cyclic guanosine monophosphate (cGMP), the enhanced expression of inducible NOS (NOS-2) and NO metabolites (nitrite and nitrate), as well as the increase of matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 (MMP-9/TIMP-1), which is an index of arterial compliance. 17ß-estradiol could also decrease ROS production in vascular endothelium. In EA hy 926 cells we found that ER antagonist, wortmannin and Akt inhibitor could block improvement effects of 17ß-estradiol. These results strongly suggest that functional impairment of the ERα/NOS-3 signaling network in OVS animals was partially restored by 17ß-estradiol administration, which provides experimental support for estrogen recruitment to improve vascular outcomes in female diabetes after endogenous hormone depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号